A Nonsingular Fixed-Time Sliding Mode Controller for Robot Manipulators in the Presence of External Perturbations and Partially Known Model

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Marco A. Arteaga, Emmanuel Moulay, Michael Defoort
{"title":"A Nonsingular Fixed-Time Sliding Mode Controller for Robot Manipulators in the Presence of External Perturbations and Partially Known Model","authors":"Marco A. Arteaga,&nbsp;Emmanuel Moulay,&nbsp;Michael Defoort","doi":"10.1002/rnc.7772","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The current contribution introduces a nonsingular fixed-time sliding mode control (SMC) scheme for position and velocity tracking of robot manipulators. The approach avoids singularities by introducing a new sliding surface with the special attribute that the exponent employed to achieve fixed time convergence depends on the tracking error and is smaller than one except when the error is exactly zero, whereas the exponent becomes one at zero, which makes the derivative at zero to be well defined. A new theoretical result has been introduced in the form of a lemma to prove this innovative property. Furthermore, model uncertainties are handled by means of a time-varying gain given by a polynomial of the powers of the norms of the tracking and velocity errors. The fixed-time convergence is proven employing Lyapunov theory, and the result holds globally. Simulation outcomes confirm the developed theory, and the advantages of the proposed scheme are shown qualitatively by comparing its performance with well-known equivalent control schemes.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 6","pages":"2010-2026"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7772","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The current contribution introduces a nonsingular fixed-time sliding mode control (SMC) scheme for position and velocity tracking of robot manipulators. The approach avoids singularities by introducing a new sliding surface with the special attribute that the exponent employed to achieve fixed time convergence depends on the tracking error and is smaller than one except when the error is exactly zero, whereas the exponent becomes one at zero, which makes the derivative at zero to be well defined. A new theoretical result has been introduced in the form of a lemma to prove this innovative property. Furthermore, model uncertainties are handled by means of a time-varying gain given by a polynomial of the powers of the norms of the tracking and velocity errors. The fixed-time convergence is proven employing Lyapunov theory, and the result holds globally. Simulation outcomes confirm the developed theory, and the advantages of the proposed scheme are shown qualitatively by comparing its performance with well-known equivalent control schemes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信