Nitrogen losses mitigated with maize–legume intercropping in the Yucatan Peninsula

IF 1.3 Q3 AGRONOMY
Jacques Fils Pierre, Carrie A. M. Laboski, Luis Latournerie-Moreno, René Garruña, Krista L. Jacobsen, Esaú Ruiz-Sánchez
{"title":"Nitrogen losses mitigated with maize–legume intercropping in the Yucatan Peninsula","authors":"Jacques Fils Pierre,&nbsp;Carrie A. M. Laboski,&nbsp;Luis Latournerie-Moreno,&nbsp;René Garruña,&nbsp;Krista L. Jacobsen,&nbsp;Esaú Ruiz-Sánchez","doi":"10.1002/agg2.70069","DOIUrl":null,"url":null,"abstract":"<p>In recent years, nitrate leaching and environmental impacts from agriculture have become global issues, due in part to the increased use of nitrogen (N) fertilizers in agriculture. In the Yucatan Peninsula, intercropping is a traditional farming practice known as the “Milpa” system (i.e., a traditional farming practice characterized by the simultaneous cultivation of maize [<i>Zea mays</i> L.], beans [<i>Phaseolus</i> spp.], and squash [<i>Cucurbita</i> spp.] in the same field). A field experiment was carried out in the region to determine the effect of maize–legume intercropping systems on potential N losses compared to sole maize cropping systems. The investigation was conducted in a vertic Cambisol, which is primarily composed of clay. The treatments included maize intercropped with the traditional legume, cowpea (<i>Vigna unguiculata</i> (L.) Walp.), maize intercropped with a novel legume for this system, sunn hemp (<i>Crotalaria juncea</i> L.), and sole maize as the control. At harvest, soil nitrate content was greater in the deepest layers (30–60 cm) in the maize monocropping system compared to the intercropping system. No significant differences were observed in terms of soil ammonium concentration between the two systems. Overall, the maize/legume intercropping system reduced total mineral N (ammonium + nitrate) concentrations by a range of 27% and 53% in the deepest layers of soil (30–60 cm and 60–90 cm, respectively) compared to the monocropping system. Thus, maize/sunn hemp and maize/cowpea intercropping can sustainably reduce N loss in the deeper soil layer and potentially reduce nitrate leaching. This study also found that a maize/cowpea intercrop not only reduced N concentrations in deeper soil layers but also maintained maize yield when compared to a sole maize cropping system. Additional research is needed to determine the mechanisms by which intercropping can reduce potential nitrate leaching while still maintaining crop yields and other ecosystem services.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"8 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.70069","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agrosystems, Geosciences & Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agg2.70069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, nitrate leaching and environmental impacts from agriculture have become global issues, due in part to the increased use of nitrogen (N) fertilizers in agriculture. In the Yucatan Peninsula, intercropping is a traditional farming practice known as the “Milpa” system (i.e., a traditional farming practice characterized by the simultaneous cultivation of maize [Zea mays L.], beans [Phaseolus spp.], and squash [Cucurbita spp.] in the same field). A field experiment was carried out in the region to determine the effect of maize–legume intercropping systems on potential N losses compared to sole maize cropping systems. The investigation was conducted in a vertic Cambisol, which is primarily composed of clay. The treatments included maize intercropped with the traditional legume, cowpea (Vigna unguiculata (L.) Walp.), maize intercropped with a novel legume for this system, sunn hemp (Crotalaria juncea L.), and sole maize as the control. At harvest, soil nitrate content was greater in the deepest layers (30–60 cm) in the maize monocropping system compared to the intercropping system. No significant differences were observed in terms of soil ammonium concentration between the two systems. Overall, the maize/legume intercropping system reduced total mineral N (ammonium + nitrate) concentrations by a range of 27% and 53% in the deepest layers of soil (30–60 cm and 60–90 cm, respectively) compared to the monocropping system. Thus, maize/sunn hemp and maize/cowpea intercropping can sustainably reduce N loss in the deeper soil layer and potentially reduce nitrate leaching. This study also found that a maize/cowpea intercrop not only reduced N concentrations in deeper soil layers but also maintained maize yield when compared to a sole maize cropping system. Additional research is needed to determine the mechanisms by which intercropping can reduce potential nitrate leaching while still maintaining crop yields and other ecosystem services.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Agrosystems, Geosciences & Environment
Agrosystems, Geosciences & Environment Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
80
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信