A Review of Multi-Object Tracking in Recent Times

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Suya Li, Hengyi Ren, Xin Xie, Ying Cao
{"title":"A Review of Multi-Object Tracking in Recent Times","authors":"Suya Li,&nbsp;Hengyi Ren,&nbsp;Xin Xie,&nbsp;Ying Cao","doi":"10.1049/cvi2.70010","DOIUrl":null,"url":null,"abstract":"<p>Multi-object tracking (MOT) is a fundamental problem in computer vision that involves tracing the trajectories of foreground targets throughout a video sequence while establishing correspondences for identical objects across frames. With the advancement of deep learning techniques, methods based on deep learning have significantly improved accuracy and efficiency in MOT. This paper reviews several recent deep learning-based MOT methods and categorises them into three main groups: detection-based, single-object tracking (SOT)-based, and segmentation-based methods, according to their core technologies. Additionally, this paper discusses the metrics and datasets used for evaluating MOT performance, the challenges faced in the field, and future directions for research.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70010","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-object tracking (MOT) is a fundamental problem in computer vision that involves tracing the trajectories of foreground targets throughout a video sequence while establishing correspondences for identical objects across frames. With the advancement of deep learning techniques, methods based on deep learning have significantly improved accuracy and efficiency in MOT. This paper reviews several recent deep learning-based MOT methods and categorises them into three main groups: detection-based, single-object tracking (SOT)-based, and segmentation-based methods, according to their core technologies. Additionally, this paper discusses the metrics and datasets used for evaluating MOT performance, the challenges faced in the field, and future directions for research.

Abstract Image

近年来多目标跟踪研究综述
多目标跟踪(MOT)是计算机视觉中的一个基本问题,它涉及在整个视频序列中跟踪前景目标的轨迹,同时建立跨帧相同对象的对应关系。随着深度学习技术的进步,基于深度学习的方法显著提高了MOT的精度和效率。本文回顾了最近几种基于深度学习的MOT方法,并根据其核心技术将其分为三大类:基于检测的方法、基于单目标跟踪(SOT)的方法和基于分割的方法。此外,本文还讨论了用于评估MOT性能的指标和数据集,该领域面临的挑战以及未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信