Type-II Thermoelasticity of Linear Anisotropic Micropolar Media

IF 0.6 4区 工程技术 Q4 MECHANICS
Y. N. Radaev
{"title":"Type-II Thermoelasticity of Linear Anisotropic Micropolar Media","authors":"Y. N. Radaev","doi":"10.1134/S0025654424700304","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the mechanics of micropolar elastic solids is extended to a more general thermoelastic media in order to take account of the effect of temperature on their states and mechanical behavior. Since a thermoelastic micropolar medium conducts heat, it is required to include one or another mechanism of thermal propagation in the basic equations of micropolar thermoelasticity. A model of thermoelastic micropolar medium CGNII is developed on ground of the wave principle of heat transfer (i.e., thermal conductivity of the second type known from previous discussions by Green and Naghdi), characterized by zero internal entropy production. All the basic equations of the theory presented in this study are derived from the conventional balance equations of continuum mechanics and the fundamental thermodynamic inequality. Constitutive equations for a linear anisotropic thermoelastic micropolar medium (CGNII) are obtained by using a quadratic energy form for the Helmholtz free energy. Special attention is paid to hemitropic micropolar medium, when the components of one of the fourth rank constitutive pseudotensors demonstrate sensitivity to mirror reflections of three-dimensional space. A closed system of coupled differential equations is given in terms of translational displacement vector, spinor displacement vector and thermal displacement. It is important since can be used in formulations of applied problems of thermomechanics related to the wave heat transfer mechanism in micropolar elastic media.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 6","pages":"3408 - 3416"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424700304","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the mechanics of micropolar elastic solids is extended to a more general thermoelastic media in order to take account of the effect of temperature on their states and mechanical behavior. Since a thermoelastic micropolar medium conducts heat, it is required to include one or another mechanism of thermal propagation in the basic equations of micropolar thermoelasticity. A model of thermoelastic micropolar medium CGNII is developed on ground of the wave principle of heat transfer (i.e., thermal conductivity of the second type known from previous discussions by Green and Naghdi), characterized by zero internal entropy production. All the basic equations of the theory presented in this study are derived from the conventional balance equations of continuum mechanics and the fundamental thermodynamic inequality. Constitutive equations for a linear anisotropic thermoelastic micropolar medium (CGNII) are obtained by using a quadratic energy form for the Helmholtz free energy. Special attention is paid to hemitropic micropolar medium, when the components of one of the fourth rank constitutive pseudotensors demonstrate sensitivity to mirror reflections of three-dimensional space. A closed system of coupled differential equations is given in terms of translational displacement vector, spinor displacement vector and thermal displacement. It is important since can be used in formulations of applied problems of thermomechanics related to the wave heat transfer mechanism in micropolar elastic media.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Solids
Mechanics of Solids 医学-力学
CiteScore
1.20
自引率
42.90%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信