{"title":"Type-II Thermoelasticity of Linear Anisotropic Micropolar Media","authors":"Y. N. Radaev","doi":"10.1134/S0025654424700304","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the mechanics of micropolar elastic solids is extended to a more general thermoelastic media in order to take account of the effect of temperature on their states and mechanical behavior. Since a thermoelastic micropolar medium conducts heat, it is required to include one or another mechanism of thermal propagation in the basic equations of micropolar thermoelasticity. A model of thermoelastic micropolar medium CGNII is developed on ground of the wave principle of heat transfer (i.e., thermal conductivity of the second type known from previous discussions by Green and Naghdi), characterized by zero internal entropy production. All the basic equations of the theory presented in this study are derived from the conventional balance equations of continuum mechanics and the fundamental thermodynamic inequality. Constitutive equations for a linear anisotropic thermoelastic micropolar medium (CGNII) are obtained by using a quadratic energy form for the Helmholtz free energy. Special attention is paid to hemitropic micropolar medium, when the components of one of the fourth rank constitutive pseudotensors demonstrate sensitivity to mirror reflections of three-dimensional space. A closed system of coupled differential equations is given in terms of translational displacement vector, spinor displacement vector and thermal displacement. It is important since can be used in formulations of applied problems of thermomechanics related to the wave heat transfer mechanism in micropolar elastic media.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 6","pages":"3408 - 3416"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424700304","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the mechanics of micropolar elastic solids is extended to a more general thermoelastic media in order to take account of the effect of temperature on their states and mechanical behavior. Since a thermoelastic micropolar medium conducts heat, it is required to include one or another mechanism of thermal propagation in the basic equations of micropolar thermoelasticity. A model of thermoelastic micropolar medium CGNII is developed on ground of the wave principle of heat transfer (i.e., thermal conductivity of the second type known from previous discussions by Green and Naghdi), characterized by zero internal entropy production. All the basic equations of the theory presented in this study are derived from the conventional balance equations of continuum mechanics and the fundamental thermodynamic inequality. Constitutive equations for a linear anisotropic thermoelastic micropolar medium (CGNII) are obtained by using a quadratic energy form for the Helmholtz free energy. Special attention is paid to hemitropic micropolar medium, when the components of one of the fourth rank constitutive pseudotensors demonstrate sensitivity to mirror reflections of three-dimensional space. A closed system of coupled differential equations is given in terms of translational displacement vector, spinor displacement vector and thermal displacement. It is important since can be used in formulations of applied problems of thermomechanics related to the wave heat transfer mechanism in micropolar elastic media.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.