{"title":"Stress Intensity Factors at the Top of the Central Semi-Infinite Crack in an Arbitraly Loaded Isotropic Strip","authors":"K. B. Ustinov","doi":"10.1134/S0025654424603999","DOIUrl":null,"url":null,"abstract":"<p>A two-dimensional problem of elasticity theory on an isotropic strip with a central semi-infinite crack is considered. The load in the form of a concentrated force is assumed to be applied at an arbitrary point of the strip. Using invariant mutual integrals and solutions for a strip loaded with bending moments and longitudinal forces applied at infinity, expressions for stress intensity factors (SIF) for the problem under consideration are obtained. The cases of forces applied at the crack faces, at the strip boundaries and at the internal points of the strip are considered. Asymptotic expressions are obtained for the cases of application of forces far from the crack tip and forces applied at the crack faces near its tip. The obtained solutions are shown to coincide with known solutions for special cases: loads in the form of a pair of normal forces applied to the crack faces and forces applied far from the crack tip.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 6","pages":"3295 - 3314"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424603999","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
A two-dimensional problem of elasticity theory on an isotropic strip with a central semi-infinite crack is considered. The load in the form of a concentrated force is assumed to be applied at an arbitrary point of the strip. Using invariant mutual integrals and solutions for a strip loaded with bending moments and longitudinal forces applied at infinity, expressions for stress intensity factors (SIF) for the problem under consideration are obtained. The cases of forces applied at the crack faces, at the strip boundaries and at the internal points of the strip are considered. Asymptotic expressions are obtained for the cases of application of forces far from the crack tip and forces applied at the crack faces near its tip. The obtained solutions are shown to coincide with known solutions for special cases: loads in the form of a pair of normal forces applied to the crack faces and forces applied far from the crack tip.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.