{"title":"Nickel-Matrix Composite with Diamane: Molecular Dynamics","authors":"P. V. Polyakova","doi":"10.1134/S0025654424606384","DOIUrl":null,"url":null,"abstract":"<p>The rapid development of technology and industry requires the search of new materials which combine high strength, light weight and corrosion resistance. Metal matrix composites reinforced with two-dimensional carbon allotropes exhibit impressive mechanical, physical and tribological properties. Diamane, a two-dimensional diamond, is a very promising material for the production of thin, ultra-high strength coatings and as the reinforcement for metal matrix composites. Simulation methods can considerably improve understanding of the interaction between the diamane and metal phase. Molecular dynamics allow to analyse different properties of new materials on the atomistic level. In the present work, the mechanical properties of new composite – nickel reinforced with diamane – are investigated by molecular dynamics simulation. The structural changes in the Ni/diamane composite during tensile loading are analyzed in detail. The Young’s modulus and ultimate tensile strength of Ni/diamanе composite are 147 and 22.1 GPa, respectively, but they can be increased by increasing the diamane layers in the composite. It was found that dislocation nucleation occurred at the interface between Ni and diamane. The tensile strength of Ni/diamane composite depends on the tensile direction. The results obtained contribute to a better understanding of the processes of formation, deformation behaviour, and mechanical properties of composites based on metal and diamane.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 6","pages":"3673 - 3680"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424606384","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of technology and industry requires the search of new materials which combine high strength, light weight and corrosion resistance. Metal matrix composites reinforced with two-dimensional carbon allotropes exhibit impressive mechanical, physical and tribological properties. Diamane, a two-dimensional diamond, is a very promising material for the production of thin, ultra-high strength coatings and as the reinforcement for metal matrix composites. Simulation methods can considerably improve understanding of the interaction between the diamane and metal phase. Molecular dynamics allow to analyse different properties of new materials on the atomistic level. In the present work, the mechanical properties of new composite – nickel reinforced with diamane – are investigated by molecular dynamics simulation. The structural changes in the Ni/diamane composite during tensile loading are analyzed in detail. The Young’s modulus and ultimate tensile strength of Ni/diamanе composite are 147 and 22.1 GPa, respectively, but they can be increased by increasing the diamane layers in the composite. It was found that dislocation nucleation occurred at the interface between Ni and diamane. The tensile strength of Ni/diamane composite depends on the tensile direction. The results obtained contribute to a better understanding of the processes of formation, deformation behaviour, and mechanical properties of composites based on metal and diamane.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.