Anisotropic Mechanical Behaviors and Constitutive Model of AZ31 Magnesium Alloy Sheets

IF 0.6 4区 工程技术 Q4 MECHANICS
Z. Wang, Y. Zhang, Q. Shen, E. Q. Liu
{"title":"Anisotropic Mechanical Behaviors and Constitutive Model of AZ31 Magnesium Alloy Sheets","authors":"Z. Wang,&nbsp;Y. Zhang,&nbsp;Q. Shen,&nbsp;E. Q. Liu","doi":"10.1134/S0025654424605391","DOIUrl":null,"url":null,"abstract":"<p>Compared with traditional metal materials, the advantages of magnesium alloys are high specific strength and high specific stiffness, which are widely used in various fields of industrial production. The rolling magnesium alloy material has relatively complex mechanical properties due to its crystal structure and texture from processing. Uniaxial quasi-static tensile tests with five orientations along the rolling direction were designed based on the macroscopic elastic-plasticity theory to investigate the mechanical properties of AZ31 magnesium alloy sheets. Experimental true stress-strain and the plastic strain ratio were obtained by the DIC strain-measurement method, the initial yield strength decreases as the angle increases from 0 to 90°, while the tensile strength, in contrast, increases overall as the angle increases. The anisotropic yield criterion and plastic potential function were established in the basic form of the Hill48 yield function. The composite linear-swift hardening model was constructed according to the hardening characteristics of the material. Besides, the complete constitutive model was obtained by calibrating the parameters in the function with the experimental results. The anisotropic model was further validated based on the commercial finite element software COMOSL. The experimental results were compared to confirm the validity of the anisotropic model of AZ31 magnesium alloy sheets.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 6","pages":"3559 - 3570"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424605391","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Compared with traditional metal materials, the advantages of magnesium alloys are high specific strength and high specific stiffness, which are widely used in various fields of industrial production. The rolling magnesium alloy material has relatively complex mechanical properties due to its crystal structure and texture from processing. Uniaxial quasi-static tensile tests with five orientations along the rolling direction were designed based on the macroscopic elastic-plasticity theory to investigate the mechanical properties of AZ31 magnesium alloy sheets. Experimental true stress-strain and the plastic strain ratio were obtained by the DIC strain-measurement method, the initial yield strength decreases as the angle increases from 0 to 90°, while the tensile strength, in contrast, increases overall as the angle increases. The anisotropic yield criterion and plastic potential function were established in the basic form of the Hill48 yield function. The composite linear-swift hardening model was constructed according to the hardening characteristics of the material. Besides, the complete constitutive model was obtained by calibrating the parameters in the function with the experimental results. The anisotropic model was further validated based on the commercial finite element software COMOSL. The experimental results were compared to confirm the validity of the anisotropic model of AZ31 magnesium alloy sheets.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Solids
Mechanics of Solids 医学-力学
CiteScore
1.20
自引率
42.90%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信