{"title":"Jacobi Stability and Restoration of Parameters of the Nonlinear Double Pendulum","authors":"P. M. Shkapov, V. D. Sulimov, A. V. Sulimov","doi":"10.1134/S0025654424604178","DOIUrl":null,"url":null,"abstract":"<p>The Jacobi stability analysis of the nonlinear dynamical system on base of Kosambi–Cartan–Chern theory is considered. Geometric description of time evolution of the system is introduced, that makes it possible to determine five geometric invariants. Eigenvalues of the second invariant (the deviation curvature tensor) give an estimate of Jacobi stability of the system. This approach is relevant in applications where it is required to identify the areas of Lyapunov and Jacobi stability simultaneously. For the nonlinear system – the double pendulum – the dependence of the Jacobi stability on initial conditions is investigated. The components of the deviation curvature tensor corresponding to the initial conditions and the eigenvalues of the tensor are defined explicitly. The boundary of the deterministic system transition from regular motion to chaotic one determined by the initial conditions has been found. The formulation of the inverse eigenvalue problem for the deviation curvature tensor associated with the restoration of significant parameters of the system is proposed. The solution of the formulated inverse problem has been obtained with the use of optimization approach. Numerical examples of restoring the system parameters for cases of its regular and chaotic behavior are given.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 6","pages":"3336 - 3346"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424604178","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Jacobi stability analysis of the nonlinear dynamical system on base of Kosambi–Cartan–Chern theory is considered. Geometric description of time evolution of the system is introduced, that makes it possible to determine five geometric invariants. Eigenvalues of the second invariant (the deviation curvature tensor) give an estimate of Jacobi stability of the system. This approach is relevant in applications where it is required to identify the areas of Lyapunov and Jacobi stability simultaneously. For the nonlinear system – the double pendulum – the dependence of the Jacobi stability on initial conditions is investigated. The components of the deviation curvature tensor corresponding to the initial conditions and the eigenvalues of the tensor are defined explicitly. The boundary of the deterministic system transition from regular motion to chaotic one determined by the initial conditions has been found. The formulation of the inverse eigenvalue problem for the deviation curvature tensor associated with the restoration of significant parameters of the system is proposed. The solution of the formulated inverse problem has been obtained with the use of optimization approach. Numerical examples of restoring the system parameters for cases of its regular and chaotic behavior are given.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.