AI-driven modeling and control of low earth orbit satellites

Q3 Earth and Planetary Sciences
H. A. Embaby, M. N. Ismail, A. H. Ibrahim, T. M. Habib
{"title":"AI-driven modeling and control of low earth orbit satellites","authors":"H. A. Embaby,&nbsp;M. N. Ismail,&nbsp;A. H. Ibrahim,&nbsp;T. M. Habib","doi":"10.1007/s42401-024-00328-8","DOIUrl":null,"url":null,"abstract":"<div><p>This review presents a groundbreaking approach for investigating low-satellite orbits through the derivation of comprehensive equations governing their motions. The present work also presents some of the forces affecting this motion at low satellite orbit levels. This paper also presents different numerical methods for solving the equations governing two-body problems. The goal is to develop a strong mathematical model for the satellite to find a suitable path for orbital movement. Due to the effects on the orbit, the orbit must be controlled. For this purpose, orbital control uses orbital maneuvers to move the satellite to the desired location. Some modern technology (intelligent modeling) was used to create a simulator to increase the mathematical accuracy of the model and control its orbit. The objective is to develop a comprehensive mathematical model of orbital motion. This includes the design of a control unit for satellite orbits and the application of optimization algorithms. Furthermore, it involves developing a neural network-based model for the orbital control system. This study aims to achieve the desired outcomes in satellite orbital motion control by integrating these components.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"8 1","pages":"1 - 25"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42401-024-00328-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-024-00328-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This review presents a groundbreaking approach for investigating low-satellite orbits through the derivation of comprehensive equations governing their motions. The present work also presents some of the forces affecting this motion at low satellite orbit levels. This paper also presents different numerical methods for solving the equations governing two-body problems. The goal is to develop a strong mathematical model for the satellite to find a suitable path for orbital movement. Due to the effects on the orbit, the orbit must be controlled. For this purpose, orbital control uses orbital maneuvers to move the satellite to the desired location. Some modern technology (intelligent modeling) was used to create a simulator to increase the mathematical accuracy of the model and control its orbit. The objective is to develop a comprehensive mathematical model of orbital motion. This includes the design of a control unit for satellite orbits and the application of optimization algorithms. Furthermore, it involves developing a neural network-based model for the orbital control system. This study aims to achieve the desired outcomes in satellite orbital motion control by integrating these components.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Aerospace Systems
Aerospace Systems Social Sciences-Social Sciences (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
53
期刊介绍: Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering. Potential topics include, but are not limited to: Trans-space vehicle systems design and integration Air vehicle systems Space vehicle systems Near-space vehicle systems Aerospace robotics and unmanned system Communication, navigation and surveillance Aerodynamics and aircraft design Dynamics and control Aerospace propulsion Avionics system Opto-electronic system Air traffic management Earth observation Deep space exploration Bionic micro-aircraft/spacecraft Intelligent sensing and Information fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信