A lattice-based privacy-preserving decentralized multi-party payment scheme

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jisheng Dong , Qingni Shen , Junkai Liang , Cong Li , Xinyu Feng , Yuejian Fang
{"title":"A lattice-based privacy-preserving decentralized multi-party payment scheme","authors":"Jisheng Dong ,&nbsp;Qingni Shen ,&nbsp;Junkai Liang ,&nbsp;Cong Li ,&nbsp;Xinyu Feng ,&nbsp;Yuejian Fang","doi":"10.1016/j.comnet.2025.111129","DOIUrl":null,"url":null,"abstract":"<div><div>The use of cryptocurrencies has become an emerging and popular way of trading as they gain legitimacy. To address the issue of privacy leakage, some techniques to hide transaction amounts have been proposed such as the MimbleWimble protocol. However, these privacy enhancement schemes basically apply to one-to-one tradings between one payer and one payee, resulting in cryptocurrencies not being used in broader scenarios such as more than one payer or payee (referred to as multi-party transactions in this paper). In this work, we propose a new privacy-preserving decentralized multi-party payment (PDMP) scheme that ensures the transaction amounts in multi-party transactions remain confidential to other parties, and define the ideal functionality for it which captures the privacy and security properties in cryptocurrencies. Then we instantiate a lattice-based PDMP protocol in a hybrid model which can universally composable (UC) securely realize the functionality with a simulation-based security proof. We construct a lattice-based verifiable multi-secret sharing scheme and a lattice-based multi-prover non-interactive zero-knowledge argument to support the protocol, both of which enjoy the security in the future quantum computer era. At last, we have carried out experimental implementation of the scheme to prove its feasibility.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"262 ","pages":"Article 111129"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625000970","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The use of cryptocurrencies has become an emerging and popular way of trading as they gain legitimacy. To address the issue of privacy leakage, some techniques to hide transaction amounts have been proposed such as the MimbleWimble protocol. However, these privacy enhancement schemes basically apply to one-to-one tradings between one payer and one payee, resulting in cryptocurrencies not being used in broader scenarios such as more than one payer or payee (referred to as multi-party transactions in this paper). In this work, we propose a new privacy-preserving decentralized multi-party payment (PDMP) scheme that ensures the transaction amounts in multi-party transactions remain confidential to other parties, and define the ideal functionality for it which captures the privacy and security properties in cryptocurrencies. Then we instantiate a lattice-based PDMP protocol in a hybrid model which can universally composable (UC) securely realize the functionality with a simulation-based security proof. We construct a lattice-based verifiable multi-secret sharing scheme and a lattice-based multi-prover non-interactive zero-knowledge argument to support the protocol, both of which enjoy the security in the future quantum computer era. At last, we have carried out experimental implementation of the scheme to prove its feasibility.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信