{"title":"Minimum cost of job assignment in polynomial time by adaptive unbiased filtering and branch-and-bound algorithm with the best predictor","authors":"Jeeraporn Werapun, Witchaya Towongpaichayont, Anantaporn Hanskunatai","doi":"10.1016/j.iswa.2025.200502","DOIUrl":null,"url":null,"abstract":"<div><div>The minimum cost of job assignment (Min-JA) is one of the practical NP-hard problems to manage the optimization in science-and-engineering applications. Formally, the optimal solution of the Min-JA can be computed by the branch-and-bound (BnB) algorithm (with the efficient predictor) in O(<em>n</em>!), <em>n</em> = problem size, and O(<em>n</em><sup>3</sup>) in the best case but that best case hardly occurs. Currently, metaheuristic algorithms, such as genetic algorithms (GA) and swarm-optimization algorithms, are extensively studied, for polynomial-time solutions. Recently, unbiased filtering (in search-space reduction) could solve some NP-hard problems, such as 0/1-knapsack and multiple 0/1-knapsacks with Latin square (LS) of m-capacity ranking, for the ideal solutions in polynomial time. To solve the Min-JA problem, we propose the adaptive unbiased-filtering (AU-filtering) in O(<em>n</em><sup>3</sup>) with a new hybrid (search-space) reduction (of the indirect metaheuristic strategy and the exact BnB). Innovation-and-contribution of our AU-filtering is achieved through three main steps: 1. find 9 + <em>n</em> effective job-orders for the good initial solutions (by the indirect assignment with UP: unbiased predictor), 2. improve top 9-solutions by the indirect improvement of the significant job-orders (by Latin square of <em>n</em> permutations plus <em>n</em> complex mod-functions), and 3. classify objects (from three of the best solutions) for AU-filtering (on large <em>n</em>) with deep-reduction (on smaller <em>n</em>’) and repeat (1)-(3) until <em>n</em>’ < 6, the exact BnB is applied. In experiments, the proposed AU-filtering was evaluated by a simulation study, where its ideal results outperformed the best results of the hybrid swarm-GA algorithm on a variety of 2D datasets (<em>n</em> ≤ 1000).</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"26 ","pages":"Article 200502"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325000286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The minimum cost of job assignment (Min-JA) is one of the practical NP-hard problems to manage the optimization in science-and-engineering applications. Formally, the optimal solution of the Min-JA can be computed by the branch-and-bound (BnB) algorithm (with the efficient predictor) in O(n!), n = problem size, and O(n3) in the best case but that best case hardly occurs. Currently, metaheuristic algorithms, such as genetic algorithms (GA) and swarm-optimization algorithms, are extensively studied, for polynomial-time solutions. Recently, unbiased filtering (in search-space reduction) could solve some NP-hard problems, such as 0/1-knapsack and multiple 0/1-knapsacks with Latin square (LS) of m-capacity ranking, for the ideal solutions in polynomial time. To solve the Min-JA problem, we propose the adaptive unbiased-filtering (AU-filtering) in O(n3) with a new hybrid (search-space) reduction (of the indirect metaheuristic strategy and the exact BnB). Innovation-and-contribution of our AU-filtering is achieved through three main steps: 1. find 9 + n effective job-orders for the good initial solutions (by the indirect assignment with UP: unbiased predictor), 2. improve top 9-solutions by the indirect improvement of the significant job-orders (by Latin square of n permutations plus n complex mod-functions), and 3. classify objects (from three of the best solutions) for AU-filtering (on large n) with deep-reduction (on smaller n’) and repeat (1)-(3) until n’ < 6, the exact BnB is applied. In experiments, the proposed AU-filtering was evaluated by a simulation study, where its ideal results outperformed the best results of the hybrid swarm-GA algorithm on a variety of 2D datasets (n ≤ 1000).