VCoFWMVIFCM: An open-source code for viewpoint-based collaborative feature-weighted multi-view intuitionistic fuzzy clustering

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Amin Golzari Oskouei , Negin Samadi , Asgarali Bouyer , Jafar Tanha
{"title":"VCoFWMVIFCM: An open-source code for viewpoint-based collaborative feature-weighted multi-view intuitionistic fuzzy clustering","authors":"Amin Golzari Oskouei ,&nbsp;Negin Samadi ,&nbsp;Asgarali Bouyer ,&nbsp;Jafar Tanha","doi":"10.1016/j.simpa.2025.100743","DOIUrl":null,"url":null,"abstract":"<div><div>We present VCoFWMVIFCM, an open-source Python implementation of a multi-view fuzzy clustering algorithm based on Intuitionistic Fuzzy c-Means (IFCM). The method integrates adaptive view, feature, and sample weighting to account for varying importance and reduce outlier effects. Local neighborhood information enhances noise resistance, while a density-based initialization ensures stable centroid selection. These mechanisms collectively improve clustering robustness and accuracy for multi-view data. The modular implementation allows flexible execution and reproducibility, addressing real-world applications where multiple data perspectives exist. The code is publicly accessible on GitHub under the MIT license.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100743"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266596382500003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We present VCoFWMVIFCM, an open-source Python implementation of a multi-view fuzzy clustering algorithm based on Intuitionistic Fuzzy c-Means (IFCM). The method integrates adaptive view, feature, and sample weighting to account for varying importance and reduce outlier effects. Local neighborhood information enhances noise resistance, while a density-based initialization ensures stable centroid selection. These mechanisms collectively improve clustering robustness and accuracy for multi-view data. The modular implementation allows flexible execution and reproducibility, addressing real-world applications where multiple data perspectives exist. The code is publicly accessible on GitHub under the MIT license.
基于视点的协同特征加权多视点直觉模糊聚类的开源代码
我们提出了VCoFWMVIFCM,一个基于直觉模糊c均值(IFCM)的多视图模糊聚类算法的开源Python实现。该方法集成了自适应视图、特征和样本加权,以考虑不同的重要性并减少异常值效应。局部邻域信息增强了抗噪声能力,而基于密度的初始化保证了质心选择的稳定性。这些机制共同提高了多视图数据的聚类鲁棒性和准确性。模块化实现允许灵活的执行和再现性,解决存在多个数据透视图的实际应用程序。在MIT许可下,代码可以在GitHub上公开访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信