Connection blocking in quotients of Sol

IF 0.6 4区 数学 Q3 MATHEMATICS
Reza Bidar
{"title":"Connection blocking in quotients of Sol","authors":"Reza Bidar","doi":"10.1016/j.difgeo.2025.102241","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a connected Lie group and <span><math><mi>Γ</mi><mo>⊂</mo><mi>G</mi></math></span> a lattice. Connection curves of the homogeneous space <span><math><mi>M</mi><mo>=</mo><mi>G</mi><mo>/</mo><mi>Γ</mi></math></span> are the orbits of one parameter subgroups of <em>G</em>. To <em>block</em> a pair of points <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>M</mi></math></span> is to find a <em>finite</em> set <span><math><mi>B</mi><mo>⊂</mo><mi>M</mi><mo>∖</mo><mo>{</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></math></span> such that every connecting curve joining <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> intersects <em>B</em>. The homogeneous space <em>M</em> is <em>blockable</em> if every pair of points in <em>M</em> can be blocked, otherwise we call it <em>non-blockable</em>.</div><div><em>Sol</em> is an important Lie group and one of the eight homogeneous Thurston 3-geometries. It is a unimodular solvable Lie group diffeomorphic to <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, and together with the left invariant metric <span><math><mi>d</mi><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mn>2</mn><mi>z</mi></mrow></msup><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>z</mi></mrow></msup><mi>d</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>d</mi><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> includes copies of the hyperbolic plane, which makes studying its geometrical properties more interesting. In this paper we prove that all lattice quotients of <em>Sol</em> are non-blockable. In particular, we show that for any lattice <span><math><mi>Γ</mi><mo>⊂</mo><mi>S</mi><mi>o</mi><mi>l</mi></math></span>, the set of non-blockable pairs is a dense subset of <span><math><mi>S</mi><mi>o</mi><mi>l</mi><mo>/</mo><mi>Γ</mi><mo>×</mo><mi>S</mi><mi>o</mi><mi>l</mi><mo>/</mo><mi>Γ</mi></math></span>.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102241"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000166","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a connected Lie group and ΓG a lattice. Connection curves of the homogeneous space M=G/Γ are the orbits of one parameter subgroups of G. To block a pair of points m1,m2M is to find a finite set BM{m1,m2} such that every connecting curve joining m1 and m2 intersects B. The homogeneous space M is blockable if every pair of points in M can be blocked, otherwise we call it non-blockable.
Sol is an important Lie group and one of the eight homogeneous Thurston 3-geometries. It is a unimodular solvable Lie group diffeomorphic to R3, and together with the left invariant metric ds2=e2zdx2+e2zdy2+dz2 includes copies of the hyperbolic plane, which makes studying its geometrical properties more interesting. In this paper we prove that all lattice quotients of Sol are non-blockable. In particular, we show that for any lattice ΓSol, the set of non-blockable pairs is a dense subset of Sol/Γ×Sol/Γ.
Sol商中的连接阻塞
设G是连通李群,Γ∧G是晶格。齐次空间M=G/Γ的连接曲线是G的一个参数子群的轨道。要阻塞一对点m1,m2∈M,就是找到一个有限集合B∧M∈{m1,m2}使得连接m1和m2的每条连接曲线都与B相交,则齐次空间M是可阻塞的,如果M中的每对点都能被阻塞,则称之为不可阻塞。Sol是一个重要的李群,是8个齐次Thurston 3几何之一。它是微分同构于R3的单模可解李群,与左不变度规ds2=e−2zdx2+e2zdy2+dz2一起包含了双曲平面的副本,这使得研究其几何性质变得更加有趣。本文证明了Sol的所有格商都是不可阻塞的。特别地,我们证明了对于任意晶格Γ∧Sol,不可阻塞对的集合是Sol/Γ×Sol/Γ的密集子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信