The pancreatitis-cancer transformation-related factor, human rhomboid family-1, promotes pancreatic cancer progression through the SRC/YAP signaling pathway
Zhilong Ma , Jie Hua , Miaoyan Wei , Lin Han , Mingwei Dong , Wangcheng Xie , Tingyi Luo , Qingcai Meng , Wei Wang , Zhenshun Song , Si Shi , Xianjun Yu , Jin Xu
{"title":"The pancreatitis-cancer transformation-related factor, human rhomboid family-1, promotes pancreatic cancer progression through the SRC/YAP signaling pathway","authors":"Zhilong Ma , Jie Hua , Miaoyan Wei , Lin Han , Mingwei Dong , Wangcheng Xie , Tingyi Luo , Qingcai Meng , Wei Wang , Zhenshun Song , Si Shi , Xianjun Yu , Jin Xu","doi":"10.1016/j.tranon.2025.102346","DOIUrl":null,"url":null,"abstract":"<div><div>Pancreatic cancer is an aggressive malignancy characterized by rapid progression, unfavorable outcomes, and a low early detection rate. Elucidating the mechanisms underlying the onset and progression of pancreatic tumors is essential for early detection and for developing preventive measures. Even though human rhomboid family-1 (RHBDF) acts as an oncogene in various tumors, the role of RHBDF in pancreatic cancer progression remains unexplored. Here, publicly available datasets, including samples of chronic pancreatitis associated with pancreatic cancer from our center, were used for bioinformatics analyses, including differential expression, survival, and enrichment studies. The findings were validated by immunohistochemical staining and in vitro experiments. We found that RHBDF1 was significantly upregulated in tumor samples relative to adjacent non-tumor and pancreatitis tissues, and its expression increased in correlation with the progression of pancreatitis to cancer. Furthermore, RHBDF1 promoted the proliferation, migration, and invasion of pancreatic cancer cells, and in vivo studies demonstrated that RHBDF1 promoted pancreatic cancer progression, tissue fibrosis, and the formation of new blood vessels. RNA-sequencing and cell functional experiments indicated that RHBDF1 promotes the progression of pancreatic cancer through the SRC-YAP signaling pathway. In summary, the pancreatitis-cancer transformation-related factor, RHBDF1, promotes pancreatic cancer progression by activating the SRC-YAP signaling cascade, indicating that RHBDF1 could be a viable target for the diagnosis and treatment of early-stage pancreatic cancer.</div></div>","PeriodicalId":48975,"journal":{"name":"Translational Oncology","volume":"54 ","pages":"Article 102346"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1936523325000774","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic cancer is an aggressive malignancy characterized by rapid progression, unfavorable outcomes, and a low early detection rate. Elucidating the mechanisms underlying the onset and progression of pancreatic tumors is essential for early detection and for developing preventive measures. Even though human rhomboid family-1 (RHBDF) acts as an oncogene in various tumors, the role of RHBDF in pancreatic cancer progression remains unexplored. Here, publicly available datasets, including samples of chronic pancreatitis associated with pancreatic cancer from our center, were used for bioinformatics analyses, including differential expression, survival, and enrichment studies. The findings were validated by immunohistochemical staining and in vitro experiments. We found that RHBDF1 was significantly upregulated in tumor samples relative to adjacent non-tumor and pancreatitis tissues, and its expression increased in correlation with the progression of pancreatitis to cancer. Furthermore, RHBDF1 promoted the proliferation, migration, and invasion of pancreatic cancer cells, and in vivo studies demonstrated that RHBDF1 promoted pancreatic cancer progression, tissue fibrosis, and the formation of new blood vessels. RNA-sequencing and cell functional experiments indicated that RHBDF1 promotes the progression of pancreatic cancer through the SRC-YAP signaling pathway. In summary, the pancreatitis-cancer transformation-related factor, RHBDF1, promotes pancreatic cancer progression by activating the SRC-YAP signaling cascade, indicating that RHBDF1 could be a viable target for the diagnosis and treatment of early-stage pancreatic cancer.
期刊介绍:
Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.