Zuoya Liu , Harri Kaartinen , Teemu Hakala , Heikki Hyyti , Juha Hyyppä , Antero Kukko , Ruizhi Chen
{"title":"Performance analysis of ultra-wideband positioning for measuring tree positions in boreal forest plots","authors":"Zuoya Liu , Harri Kaartinen , Teemu Hakala , Heikki Hyyti , Juha Hyyppä , Antero Kukko , Ruizhi Chen","doi":"10.1016/j.ophoto.2025.100087","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate individual tree locations enable efficient forest inventory management and automation, support precise forest surveys, management decisions and future individual-tree harvesting plans. In this paper, we compared and analyzed in detail the performance of an ultra-wideband (UWB) data-driven method for mapping individual tree locations in boreal forest sample plots of varying complexity. Twelve forest sample plots selected from varying forest-stand conditions representing different developing stages, stem densities and abundance of sub canopy growth in boreal forests were tested. These plots were classified into three categories (“Easy”, “Medium” and “Difficult”) according to these varying stand conditions. The experimental results show that UWB data-driven method is able to map individual tree locations accurately with total root-mean-squared-errors (RMSEs) of 0.17 m, 0.2 m, and 0.26 m for “Easy”, “Medium” and “Difficult” forest plots, respectively, providing a strong reference for forest surveys.</div></div>","PeriodicalId":100730,"journal":{"name":"ISPRS Open Journal of Photogrammetry and Remote Sensing","volume":"15 ","pages":"Article 100087"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Open Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667393225000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate individual tree locations enable efficient forest inventory management and automation, support precise forest surveys, management decisions and future individual-tree harvesting plans. In this paper, we compared and analyzed in detail the performance of an ultra-wideband (UWB) data-driven method for mapping individual tree locations in boreal forest sample plots of varying complexity. Twelve forest sample plots selected from varying forest-stand conditions representing different developing stages, stem densities and abundance of sub canopy growth in boreal forests were tested. These plots were classified into three categories (“Easy”, “Medium” and “Difficult”) according to these varying stand conditions. The experimental results show that UWB data-driven method is able to map individual tree locations accurately with total root-mean-squared-errors (RMSEs) of 0.17 m, 0.2 m, and 0.26 m for “Easy”, “Medium” and “Difficult” forest plots, respectively, providing a strong reference for forest surveys.