Performance analysis of ultra-wideband positioning for measuring tree positions in boreal forest plots

Zuoya Liu , Harri Kaartinen , Teemu Hakala , Heikki Hyyti , Juha Hyyppä , Antero Kukko , Ruizhi Chen
{"title":"Performance analysis of ultra-wideband positioning for measuring tree positions in boreal forest plots","authors":"Zuoya Liu ,&nbsp;Harri Kaartinen ,&nbsp;Teemu Hakala ,&nbsp;Heikki Hyyti ,&nbsp;Juha Hyyppä ,&nbsp;Antero Kukko ,&nbsp;Ruizhi Chen","doi":"10.1016/j.ophoto.2025.100087","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate individual tree locations enable efficient forest inventory management and automation, support precise forest surveys, management decisions and future individual-tree harvesting plans. In this paper, we compared and analyzed in detail the performance of an ultra-wideband (UWB) data-driven method for mapping individual tree locations in boreal forest sample plots of varying complexity. Twelve forest sample plots selected from varying forest-stand conditions representing different developing stages, stem densities and abundance of sub canopy growth in boreal forests were tested. These plots were classified into three categories (“Easy”, “Medium” and “Difficult”) according to these varying stand conditions. The experimental results show that UWB data-driven method is able to map individual tree locations accurately with total root-mean-squared-errors (RMSEs) of 0.17 m, 0.2 m, and 0.26 m for “Easy”, “Medium” and “Difficult” forest plots, respectively, providing a strong reference for forest surveys.</div></div>","PeriodicalId":100730,"journal":{"name":"ISPRS Open Journal of Photogrammetry and Remote Sensing","volume":"15 ","pages":"Article 100087"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Open Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667393225000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate individual tree locations enable efficient forest inventory management and automation, support precise forest surveys, management decisions and future individual-tree harvesting plans. In this paper, we compared and analyzed in detail the performance of an ultra-wideband (UWB) data-driven method for mapping individual tree locations in boreal forest sample plots of varying complexity. Twelve forest sample plots selected from varying forest-stand conditions representing different developing stages, stem densities and abundance of sub canopy growth in boreal forests were tested. These plots were classified into three categories (“Easy”, “Medium” and “Difficult”) according to these varying stand conditions. The experimental results show that UWB data-driven method is able to map individual tree locations accurately with total root-mean-squared-errors (RMSEs) of 0.17 m, 0.2 m, and 0.26 m for “Easy”, “Medium” and “Difficult” forest plots, respectively, providing a strong reference for forest surveys.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信