Unveiling the impact of the fluorophore pyrrole, indole, furan, benzofuran, thiophene, benzothiophene, and pyrene attachments on the C7 atom of the isomorphic fluorescent thieno-guanine: A theoretical investigation

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Laibin Zhang, Yaping Zhang
{"title":"Unveiling the impact of the fluorophore pyrrole, indole, furan, benzofuran, thiophene, benzothiophene, and pyrene attachments on the C7 atom of the isomorphic fluorescent thieno-guanine: A theoretical investigation","authors":"Laibin Zhang,&nbsp;Yaping Zhang","doi":"10.1016/j.jmgm.2025.108999","DOIUrl":null,"url":null,"abstract":"<div><div>Thieno-guanine (thG) is a prominent emissive surrogate of natural guanine (G), which almost perfectly mimics G in nucleic duplexes. In this paper, to widen the utility of thG, the C7 attachment effects by aromatic pyrrole, indole, furan, benzofuran, thiophene, benzothiophene, and pyrene on the structural, electronic, and photophysical properties of thG were theoretically examined by using the density functional theory (DFT) and the time-dependent DFT (TD-DFT). Calculations were performed employing the hybrid B3LYP and the long-range corrected CAM-B3LYP density functionals in combination with the 6–311++G(d, p) basis set. Rigid scan calculations and optimizations were performed to obtain the most stable rotamers, and totally 14 bases (including thG) were studied. The hole-electron theory and the interfragment charge transfer (IFCT) method were applied to reveal the intrinsic characteristics of the low-lying electron excitation processes. In water solution, all the S<sub>1</sub> states of the thG-derivatives are highly allowed ππ∗ states dominated by HOMO (L)→LUMO (L) with some charges (0.028–0.193 e) been transferred from the introduced groups to the thG-moiety. The introduced groups can tune the photophysics of thG resulting in improved fluorescent properties, including visible excitation and emission wavelengths, greater absorption and emission intensities (oscillator strengths), and larger Stokes shifts. In water solution, all substituents display fluorescence wavelength longer than 500 nm and the Stokes shifts are larger than 100 nm. Also examined are the effects of base pairing with cytosine (C), and it was revealed that the S<sub>1</sub> states of all the studied base pairs (totally 14) are local excitations of the thG-derivatives. Both the S<sub>1</sub> state excitation energies and the fluorescence wavelengths are red-shifted to some extent after base pair with C, with a concomitantly decrease of the corresponding oscillator strength.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"137 ","pages":"Article 108999"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326325000592","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Thieno-guanine (thG) is a prominent emissive surrogate of natural guanine (G), which almost perfectly mimics G in nucleic duplexes. In this paper, to widen the utility of thG, the C7 attachment effects by aromatic pyrrole, indole, furan, benzofuran, thiophene, benzothiophene, and pyrene on the structural, electronic, and photophysical properties of thG were theoretically examined by using the density functional theory (DFT) and the time-dependent DFT (TD-DFT). Calculations were performed employing the hybrid B3LYP and the long-range corrected CAM-B3LYP density functionals in combination with the 6–311++G(d, p) basis set. Rigid scan calculations and optimizations were performed to obtain the most stable rotamers, and totally 14 bases (including thG) were studied. The hole-electron theory and the interfragment charge transfer (IFCT) method were applied to reveal the intrinsic characteristics of the low-lying electron excitation processes. In water solution, all the S1 states of the thG-derivatives are highly allowed ππ∗ states dominated by HOMO (L)→LUMO (L) with some charges (0.028–0.193 e) been transferred from the introduced groups to the thG-moiety. The introduced groups can tune the photophysics of thG resulting in improved fluorescent properties, including visible excitation and emission wavelengths, greater absorption and emission intensities (oscillator strengths), and larger Stokes shifts. In water solution, all substituents display fluorescence wavelength longer than 500 nm and the Stokes shifts are larger than 100 nm. Also examined are the effects of base pairing with cytosine (C), and it was revealed that the S1 states of all the studied base pairs (totally 14) are local excitations of the thG-derivatives. Both the S1 state excitation energies and the fluorescence wavelengths are red-shifted to some extent after base pair with C, with a concomitantly decrease of the corresponding oscillator strength.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信