Self-stabilized virtual element modeling of 2D mixed-mode cohesive crack propagation in isotropic elastic solids

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Y. Chen , D. Sun , Q. Li , U. Perego
{"title":"Self-stabilized virtual element modeling of 2D mixed-mode cohesive crack propagation in isotropic elastic solids","authors":"Y. Chen ,&nbsp;D. Sun ,&nbsp;Q. Li ,&nbsp;U. Perego","doi":"10.1016/j.cma.2025.117880","DOIUrl":null,"url":null,"abstract":"<div><div>A comprehensive strategy for the simulation of mixed-mode cohesive crack propagation in a mesh of originally self-stabilized Virtual Elements (VEs) is proposed. Exploiting the VEs substantial insensitivity to mesh distortion, the propagating cohesive crack is accommodated within existing self-stabilized first-order quadrilateral VEs by simply adding new edges separated by a cohesive interface. The added edges make however the VE unstable and a new procedure for the stabilization of initially stable VE is developed. The method is formulated within a recently proposed Hu–Washizu variational framework, allowing for a higher order, independent modeling of stresses. In this way, a more accurate estimate of the stress at the tip of the cohesive process zone can be achieved allowing for a more accurate assessment of crack propagation conditions and direction. The proposed method is validated by application to several benchmark problems.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"439 ","pages":"Article 117880"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525001525","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive strategy for the simulation of mixed-mode cohesive crack propagation in a mesh of originally self-stabilized Virtual Elements (VEs) is proposed. Exploiting the VEs substantial insensitivity to mesh distortion, the propagating cohesive crack is accommodated within existing self-stabilized first-order quadrilateral VEs by simply adding new edges separated by a cohesive interface. The added edges make however the VE unstable and a new procedure for the stabilization of initially stable VE is developed. The method is formulated within a recently proposed Hu–Washizu variational framework, allowing for a higher order, independent modeling of stresses. In this way, a more accurate estimate of the stress at the tip of the cohesive process zone can be achieved allowing for a more accurate assessment of crack propagation conditions and direction. The proposed method is validated by application to several benchmark problems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信