Lin Wang , Tiantang Yu , Sundararajan Natarajan , Weihua Fang , Zhiwei Zhou
{"title":"Adaptive multi-patch isogeometric analysis for heat transfer in three-dimensional solid","authors":"Lin Wang , Tiantang Yu , Sundararajan Natarajan , Weihua Fang , Zhiwei Zhou","doi":"10.1016/j.cma.2025.117895","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an adaptive multi-patch isogeometric framework for modeling heat conduction in isotropic/orthotropic media. The proposed adaptive scheme is a novel combination of local mesh refinement and adaptive time-stepping to improve the calculation efficiency and reduce meshing burden. The local adaptive refinement is driven by a recovery-based error estimator. Truncated hierarchical NURBS (TH-NURBS) are utilized for local adaptive mesh refinement due to their excellent properties, such as linear independence, partition-of-unity, and exact description of complex geometry. Multi-patch technique is applied to model complex structures, with Nitsche’s method as the coupling strategy. The computational accuracy of the proposed model is verified through several 3D numerical examples. The high efficiency of the adaptive scheme is demonstrated by comparing with uniform refinement method and fixed time-stepping method separately.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"439 ","pages":"Article 117895"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525001677","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an adaptive multi-patch isogeometric framework for modeling heat conduction in isotropic/orthotropic media. The proposed adaptive scheme is a novel combination of local mesh refinement and adaptive time-stepping to improve the calculation efficiency and reduce meshing burden. The local adaptive refinement is driven by a recovery-based error estimator. Truncated hierarchical NURBS (TH-NURBS) are utilized for local adaptive mesh refinement due to their excellent properties, such as linear independence, partition-of-unity, and exact description of complex geometry. Multi-patch technique is applied to model complex structures, with Nitsche’s method as the coupling strategy. The computational accuracy of the proposed model is verified through several 3D numerical examples. The high efficiency of the adaptive scheme is demonstrated by comparing with uniform refinement method and fixed time-stepping method separately.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.