{"title":"Robustness analysis of externally driven damped solitons in the presence of uncertainties and disorders","authors":"A. Barbosa, N. Kacem, N. Bouhaddi","doi":"10.1016/j.physd.2025.134612","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the sensitivity of localized vibrations phenomena in externally driven Duffing oscillator chains. Such investigation is conducted by generalizing the Nonlinear Schrödinger Equation (NLSE) to accommodate disorder functions in all physical parameters, beyond impurities commonly found in the literature, limited to the natural frequency of the components. Given the absence of closed-form solutions for externally driven damped systems, we employ a numerical method, followed by statistical analysis, to elucidate the effects of parameter uncertainties across the lattice on solitons behavior. Our findings highlight the diverse effects of the physical nature of uncertainties within the mechanical structure, offering insights into possible experimental investigations. Additionally, we illustrate how specific impurities along the chain, capable to nucleate oscillations, mitigate resonant chaotic behaviors, reinforcing soliton stability. The results affirm the feasibility of generating standing waves in nonlinear lattices, emphasizing their relevance beyond traditional periodic assumptions, where uncertainties in physical parameters are commonly disregarded.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134612"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925000910","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the sensitivity of localized vibrations phenomena in externally driven Duffing oscillator chains. Such investigation is conducted by generalizing the Nonlinear Schrödinger Equation (NLSE) to accommodate disorder functions in all physical parameters, beyond impurities commonly found in the literature, limited to the natural frequency of the components. Given the absence of closed-form solutions for externally driven damped systems, we employ a numerical method, followed by statistical analysis, to elucidate the effects of parameter uncertainties across the lattice on solitons behavior. Our findings highlight the diverse effects of the physical nature of uncertainties within the mechanical structure, offering insights into possible experimental investigations. Additionally, we illustrate how specific impurities along the chain, capable to nucleate oscillations, mitigate resonant chaotic behaviors, reinforcing soliton stability. The results affirm the feasibility of generating standing waves in nonlinear lattices, emphasizing their relevance beyond traditional periodic assumptions, where uncertainties in physical parameters are commonly disregarded.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.