Mingwei Jia , Qiao Liu , Lingwei Jiang , Yi Liu , Zengliang Gao , Tao Chen
{"title":"Just-in-time process soft sensor with spatiotemporal graph decoupled learning","authors":"Mingwei Jia , Qiao Liu , Lingwei Jiang , Yi Liu , Zengliang Gao , Tao Chen","doi":"10.1016/j.chemolab.2025.105367","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning-based just-in-time soft sensors effectively handle the strong nonlinearity of complex process industry, but their implementation faces significant challenges in interpretability and time cost. Hence, a just-in-time soft sensor based on spatiotemporal graph decoupling is proposed. To decrease time cost, it employs a global-local modeling strategy: pre-training on all historical data to build a global model, and fine-tuning with relevant samples to deliver a local model. To enhance interpretability, couplings that reflect how variables interact with each other in spatiotemporal dimensions are constructed, conforming to prior knowledge, to guide the graph neural network as a global model during pre-training. The global model decouples variables to quantify their influence as intrinsic information, enabling a clearer understanding of how each variable contributes to the prediction. Following the intrinsic information, relevant samples are then selected with the preset relevance metric to fine-tune the global model. Finally, two industrial cases demonstrate this model's low runtime, effectiveness, and physical consistency from the perspectives of underlying physics.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"261 ","pages":"Article 105367"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925000528","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning-based just-in-time soft sensors effectively handle the strong nonlinearity of complex process industry, but their implementation faces significant challenges in interpretability and time cost. Hence, a just-in-time soft sensor based on spatiotemporal graph decoupling is proposed. To decrease time cost, it employs a global-local modeling strategy: pre-training on all historical data to build a global model, and fine-tuning with relevant samples to deliver a local model. To enhance interpretability, couplings that reflect how variables interact with each other in spatiotemporal dimensions are constructed, conforming to prior knowledge, to guide the graph neural network as a global model during pre-training. The global model decouples variables to quantify their influence as intrinsic information, enabling a clearer understanding of how each variable contributes to the prediction. Following the intrinsic information, relevant samples are then selected with the preset relevance metric to fine-tune the global model. Finally, two industrial cases demonstrate this model's low runtime, effectiveness, and physical consistency from the perspectives of underlying physics.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.