Yu Jiang , Genshan Jiang , Jianhao Sun , Yu Zhou , Hao Li
{"title":"Mechanisms of bubble effects on acoustic propagation characteristics in high-temperature and high-pressure bubble flows","authors":"Yu Jiang , Genshan Jiang , Jianhao Sun , Yu Zhou , Hao Li","doi":"10.1016/j.pnucene.2025.105717","DOIUrl":null,"url":null,"abstract":"<div><div>In the complex gas-liquid two-phase flow environment of the nucleate boiling region outside the heat-exchange pipes of steam generators, acoustic propagation is influenced by multiple factors. Previous research has largely considered how the bubble distribution and acoustic frequency affect the acoustic velocity and attenuation, whereas the role of boundary-layer thickness in acoustic propagation has not been explored systematically. Using bubble damping theory and the linear model of acoustic propagation in water containing monodisperse bubbles, derived here is the relationship among acoustic velocity, acoustic attenuation, and boundary-layer thickness in bubble flow. Also established is a numerical model for acoustic propagation in bubble flow under high temperature and pressure, and how the bubble distribution and acoustic frequency affect the sound field is analyzed. This study reveals the factors influencing bubble damping and how it regulates acoustic attenuation, providing insight into how acoustic waves propagate in gas-liquid two-phase flows.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"184 ","pages":"Article 105717"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197025001155","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the complex gas-liquid two-phase flow environment of the nucleate boiling region outside the heat-exchange pipes of steam generators, acoustic propagation is influenced by multiple factors. Previous research has largely considered how the bubble distribution and acoustic frequency affect the acoustic velocity and attenuation, whereas the role of boundary-layer thickness in acoustic propagation has not been explored systematically. Using bubble damping theory and the linear model of acoustic propagation in water containing monodisperse bubbles, derived here is the relationship among acoustic velocity, acoustic attenuation, and boundary-layer thickness in bubble flow. Also established is a numerical model for acoustic propagation in bubble flow under high temperature and pressure, and how the bubble distribution and acoustic frequency affect the sound field is analyzed. This study reveals the factors influencing bubble damping and how it regulates acoustic attenuation, providing insight into how acoustic waves propagate in gas-liquid two-phase flows.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.