A novel application with explainable machine learning (SHAP and LIME) to predict soil N, P, and K nutrient content in cabbage cultivation

IF 6.3 Q1 AGRICULTURAL ENGINEERING
Thilina Abekoon , Hirushan Sajindra , Namal Rathnayake , Imesh U. Ekanayake , Anuradha Jayakody , Upaka Rathnayake
{"title":"A novel application with explainable machine learning (SHAP and LIME) to predict soil N, P, and K nutrient content in cabbage cultivation","authors":"Thilina Abekoon ,&nbsp;Hirushan Sajindra ,&nbsp;Namal Rathnayake ,&nbsp;Imesh U. Ekanayake ,&nbsp;Anuradha Jayakody ,&nbsp;Upaka Rathnayake","doi":"10.1016/j.atech.2025.100879","DOIUrl":null,"url":null,"abstract":"<div><div>Cabbage (<em>Brassica oleracea</em> var. capitata) is commonly cultivated in high altitudes and features dense, tightly packed leaves. The Green Coronet variety is well-known for its robust growth and culinary versatility. Maximizing yield is crucial for food sustainability. It is essential to predict the soil's major nutrients (nitrogen, phosphorus, and potassium) to maximize the yield. Artificial intelligence is widely used for non-linear predictions with explainability. This research assessed the predictive capabilities of soil nitrogen, phosphorus, and potassium levels with explainable machine learning methods over an 85-day cabbage growth period. Experiments were conducted on cabbage plants grown in central hills of Sri Lanka. SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) were used to clarify the model's predictions. SHAP analysis showed that high feature values of the number of days and plant average leaf area negatively impacted for nutrient predictions, while high feature values of leaf count and plant height had a positive effect on the nutrient predictions. To validate the results, 15 greenhouse-grown cabbage plants at various growth stages were selected. The nitrogen, phosphorus, and potassium levels were measured and compared with the predicted values. These insights help refine predictive models and optimize agricultural practices. A user-friendly application was developed to improve the accessibility and interpretation of predictions. This tool is a user-friendly platform for end-users, enabling effective use of the model's predictive capabilities.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"11 ","pages":"Article 100879"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525001121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Cabbage (Brassica oleracea var. capitata) is commonly cultivated in high altitudes and features dense, tightly packed leaves. The Green Coronet variety is well-known for its robust growth and culinary versatility. Maximizing yield is crucial for food sustainability. It is essential to predict the soil's major nutrients (nitrogen, phosphorus, and potassium) to maximize the yield. Artificial intelligence is widely used for non-linear predictions with explainability. This research assessed the predictive capabilities of soil nitrogen, phosphorus, and potassium levels with explainable machine learning methods over an 85-day cabbage growth period. Experiments were conducted on cabbage plants grown in central hills of Sri Lanka. SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) were used to clarify the model's predictions. SHAP analysis showed that high feature values of the number of days and plant average leaf area negatively impacted for nutrient predictions, while high feature values of leaf count and plant height had a positive effect on the nutrient predictions. To validate the results, 15 greenhouse-grown cabbage plants at various growth stages were selected. The nitrogen, phosphorus, and potassium levels were measured and compared with the predicted values. These insights help refine predictive models and optimize agricultural practices. A user-friendly application was developed to improve the accessibility and interpretation of predictions. This tool is a user-friendly platform for end-users, enabling effective use of the model's predictive capabilities.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信