Use of a 416B-type central-hybrid experimental design to evaluate the synthesis conditions of TiO2/biochar composites on the solid-state photocatalytic degradation of polypropylene-plastic films
Deyler Castilla-Caballero , Astrid Medina-Guerrero , Aracely Hernandez-Ramirez , Sofia Vazquez-Rodriguez , José Colina-Márquez , Fiderman Machuca Martínez , Juan Barraza-Burgos , Aicardo Roa-Espinosa , Sundaram Gunasekaran
{"title":"Use of a 416B-type central-hybrid experimental design to evaluate the synthesis conditions of TiO2/biochar composites on the solid-state photocatalytic degradation of polypropylene-plastic films","authors":"Deyler Castilla-Caballero , Astrid Medina-Guerrero , Aracely Hernandez-Ramirez , Sofia Vazquez-Rodriguez , José Colina-Márquez , Fiderman Machuca Martínez , Juan Barraza-Burgos , Aicardo Roa-Espinosa , Sundaram Gunasekaran","doi":"10.1016/j.apcata.2025.120196","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an innovative application of solid-state photocatalysis using environmentally friendly TiO<sub>2</sub>/biochar composites to degrade polypropylene (PP) films and reduce plastic pollution. Biochar, derived from coconut shells via controlled pyrolysis, was combined with TiO<sub>2</sub> to enhance photocatalytic activity. A 416B-type Central-Hybrid Experimental Design was used to optimize synthesis parameters, revealing that biochar produced at 280°C with 4.1 % v/v oxygen and a TiO<sub>2</sub>/biochar weight ratio of 1.5 yields the best results. After 25 days of UV irradiation, films incorporated with TiO<sub>2</sub>/biochar composites exhibited an 8.7 % weight loss and a carbonyl index of 11.4—significantly surpassing pristine PP films. These findings demonstrate the potential of biochar as a sustainable solution to reduce nanotoxicity while boosting polymer degradation efficiency. This work contributes to the development of eco-friendly materials for mitigating plastic waste challenges.</div></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":"697 ","pages":"Article 120196"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X25000973","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an innovative application of solid-state photocatalysis using environmentally friendly TiO2/biochar composites to degrade polypropylene (PP) films and reduce plastic pollution. Biochar, derived from coconut shells via controlled pyrolysis, was combined with TiO2 to enhance photocatalytic activity. A 416B-type Central-Hybrid Experimental Design was used to optimize synthesis parameters, revealing that biochar produced at 280°C with 4.1 % v/v oxygen and a TiO2/biochar weight ratio of 1.5 yields the best results. After 25 days of UV irradiation, films incorporated with TiO2/biochar composites exhibited an 8.7 % weight loss and a carbonyl index of 11.4—significantly surpassing pristine PP films. These findings demonstrate the potential of biochar as a sustainable solution to reduce nanotoxicity while boosting polymer degradation efficiency. This work contributes to the development of eco-friendly materials for mitigating plastic waste challenges.
期刊介绍:
Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications.
Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.