Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang
{"title":"Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity","authors":"Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang","doi":"10.1016/j.actphy.2025.100074","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic reduction of carbon dioxide (CO<sub>2</sub>) has emerged as an effective technology to transform CO<sub>2</sub> into valuable chemicals. Metal-organic frameworks (MOFs) show great promise due to their adjustable structures, huge specific surface areas, excellent catalytic properties, and remarkable photo responsiveness. Herein, the MOF material NNU-55(Fe) was employed for the photocatalytic transformation of CO<sub>2</sub> into carbon monoxide (CO). Through electronic modulation of the active metal center (Fe–N4) <em>via</em> inorganic anionic ligand tuning, the photocatalytic performance of NNU-55(Fe) MOFs can be easily regulated. Notably, NO<sub>3</sub><sup>−</sup>-coordinated NNU-55(Fe) demonstrated superior catalytic performance compared to SO<sub>4</sub><sup>2−</sup>- and Cl<sup>−</sup>-coordinated catalysts, achieving a CO production of 124 μmol·g<sup>−1</sup> within 3 h. The stronger electron donation capacity of NO<sub>3</sub><sup>−</sup> leads to an improved electron density of Fe centers, which lowers the Fe <em>d</em>-band center and enhances the bonding orbital occupancy in the adsorption system, thereby increasing the adsorption strength of CO<sub>2</sub> and reduction activity. This study highlights a simple strategy for altering the catalytic activity and electrical structure of MOFs by altering the coordinated inorganic ligands of metal sites, offering a novel approach to developing efficient photocatalytic materials.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 7","pages":"Article 100074"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100068182500030X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic reduction of carbon dioxide (CO2) has emerged as an effective technology to transform CO2 into valuable chemicals. Metal-organic frameworks (MOFs) show great promise due to their adjustable structures, huge specific surface areas, excellent catalytic properties, and remarkable photo responsiveness. Herein, the MOF material NNU-55(Fe) was employed for the photocatalytic transformation of CO2 into carbon monoxide (CO). Through electronic modulation of the active metal center (Fe–N4) via inorganic anionic ligand tuning, the photocatalytic performance of NNU-55(Fe) MOFs can be easily regulated. Notably, NO3−-coordinated NNU-55(Fe) demonstrated superior catalytic performance compared to SO42−- and Cl−-coordinated catalysts, achieving a CO production of 124 μmol·g−1 within 3 h. The stronger electron donation capacity of NO3− leads to an improved electron density of Fe centers, which lowers the Fe d-band center and enhances the bonding orbital occupancy in the adsorption system, thereby increasing the adsorption strength of CO2 and reduction activity. This study highlights a simple strategy for altering the catalytic activity and electrical structure of MOFs by altering the coordinated inorganic ligands of metal sites, offering a novel approach to developing efficient photocatalytic materials.