Integrated optimization of demand-oriented timetabling and rolling stock circulation planning with flexible train compositions and multiple service routes on urban rail lines
IF 7.6 1区 工程技术Q1 TRANSPORTATION SCIENCE & TECHNOLOGY
Xinyu Bao , Qi Zhang , Haodong Yin , Entai Wang , Yaling Xiao
{"title":"Integrated optimization of demand-oriented timetabling and rolling stock circulation planning with flexible train compositions and multiple service routes on urban rail lines","authors":"Xinyu Bao , Qi Zhang , Haodong Yin , Entai Wang , Yaling Xiao","doi":"10.1016/j.trc.2025.105071","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates an integrated train operation plan problem with flexible train compositions and multiple service routes, which allows trains to couple, decouple and turn around at intermediate turnaround stations based on virtual coupling technology. An integrated optimization model for demand-oriented train timetables and rolling stock circulation plans is developed with the consideration of train service routes and the number of train services, by minimizing both passenger waiting time and operation costs. Specifically, with the path-based space–time network representation, we formulate a novel rolling stock circulation model, which accounts for coupling and decoupling operations and stabling track capacity constraints with lower complexity than the assignment model. In addition, we improve the linear dynamic passenger flow loading model, which extends the operational application with multiple service routes and characterizes various passenger waiting behaviors. To solve the proposed model, an adaptive simulated annealing (ASA) algorithm is designed to obtain high-quality solutions using flow-oriented and random operators. Lastly, the performance of the proposed models and algorithms is verified by small-scale numerical experiments. Then, the efficiency of the proposed approaches is further demonstrated through a real-world case study based on Beijing Subway Changping Line, showing a 42% reduction in total passenger waiting time, a decrease of 16 rolling stock, and a 10% reduction in variable operation costs compared to the current operation mode.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"174 ","pages":"Article 105071"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X25000750","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates an integrated train operation plan problem with flexible train compositions and multiple service routes, which allows trains to couple, decouple and turn around at intermediate turnaround stations based on virtual coupling technology. An integrated optimization model for demand-oriented train timetables and rolling stock circulation plans is developed with the consideration of train service routes and the number of train services, by minimizing both passenger waiting time and operation costs. Specifically, with the path-based space–time network representation, we formulate a novel rolling stock circulation model, which accounts for coupling and decoupling operations and stabling track capacity constraints with lower complexity than the assignment model. In addition, we improve the linear dynamic passenger flow loading model, which extends the operational application with multiple service routes and characterizes various passenger waiting behaviors. To solve the proposed model, an adaptive simulated annealing (ASA) algorithm is designed to obtain high-quality solutions using flow-oriented and random operators. Lastly, the performance of the proposed models and algorithms is verified by small-scale numerical experiments. Then, the efficiency of the proposed approaches is further demonstrated through a real-world case study based on Beijing Subway Changping Line, showing a 42% reduction in total passenger waiting time, a decrease of 16 rolling stock, and a 10% reduction in variable operation costs compared to the current operation mode.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.