Scaffolding worker IMU time-series dataset for deep learning-based construction site behavior recognition

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Minsoo Park , Seongwoo Son , Yuntae Jeon , Dongyoung Ko , Mingeon Cho , Seunghee Park
{"title":"Scaffolding worker IMU time-series dataset for deep learning-based construction site behavior recognition","authors":"Minsoo Park ,&nbsp;Seongwoo Son ,&nbsp;Yuntae Jeon ,&nbsp;Dongyoung Ko ,&nbsp;Mingeon Cho ,&nbsp;Seunghee Park","doi":"10.1016/j.aei.2025.103232","DOIUrl":null,"url":null,"abstract":"<div><div>The construction industry is one of the most dangerous industries worldwide, and scaffold-related accidents are a significant concern. Despite the widespread use of scaffolds, the safety regulations pertaining to scaffolding remain among the most frequently violated, leading to a high frequency of accidents. Advancements in deep learning offer promising avenues for automating safety monitoring. However, the field is hindered by the lack of accessible datasets for training models in worker-behavior recognition. This study introduces the scaffolding worker inertial measurement unit (IMU) time-series (SWIT) dataset, which is designed to enrich the development of deep learning models for the automated recognition of construction worker behaviors. The SWIT dataset addresses the limitations of existing datasets by incorporating a wide range of hazardous behaviors, regulatory violations, and emergency situations specific to scaffolding. The dataset was developed through a rigorous process involving the analysis of sensor positions from previous studies, studies on abnormal behavior recognition, and scaffolding-safety regulations. It comprises ten categories of behaviors, including hazardous actions, near-miss incidents, and activities that may lead to musculoskeletal disorders. By providing a comprehensive collection of annotated time-series data from IMU sensors, this dataset aims to facilitate the development of robust deep learning models for automated worker-behavior recognition.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103232"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625001259","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The construction industry is one of the most dangerous industries worldwide, and scaffold-related accidents are a significant concern. Despite the widespread use of scaffolds, the safety regulations pertaining to scaffolding remain among the most frequently violated, leading to a high frequency of accidents. Advancements in deep learning offer promising avenues for automating safety monitoring. However, the field is hindered by the lack of accessible datasets for training models in worker-behavior recognition. This study introduces the scaffolding worker inertial measurement unit (IMU) time-series (SWIT) dataset, which is designed to enrich the development of deep learning models for the automated recognition of construction worker behaviors. The SWIT dataset addresses the limitations of existing datasets by incorporating a wide range of hazardous behaviors, regulatory violations, and emergency situations specific to scaffolding. The dataset was developed through a rigorous process involving the analysis of sensor positions from previous studies, studies on abnormal behavior recognition, and scaffolding-safety regulations. It comprises ten categories of behaviors, including hazardous actions, near-miss incidents, and activities that may lead to musculoskeletal disorders. By providing a comprehensive collection of annotated time-series data from IMU sensors, this dataset aims to facilitate the development of robust deep learning models for automated worker-behavior recognition.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信