4d and 5d transition-metal doped Janus PtSSe as a viable sensitive sensor toward COCl2

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Jiawei Shen , Qingxiao Zhou , Xinglong Yan , Weiran Li , Weiwei Ju , Chengyou Cai
{"title":"4d and 5d transition-metal doped Janus PtSSe as a viable sensitive sensor toward COCl2","authors":"Jiawei Shen ,&nbsp;Qingxiao Zhou ,&nbsp;Xinglong Yan ,&nbsp;Weiran Li ,&nbsp;Weiwei Ju ,&nbsp;Chengyou Cai","doi":"10.1016/j.physe.2025.116234","DOIUrl":null,"url":null,"abstract":"<div><div>The adsorption behaviors, electronic and gas-sensing properties of phosgene (COCl<sub>2</sub>) on perfect, defected (S- and Se-vacancy), and transition-metal doped (TMs: Pd, Hf, Ta, W, Re, Os, Ir, and Au) PtSSe monolayer were explored by density functional theory (DFT). Pristine PtSSe monolayer exhibited long adsorption distance, small adsorption energy and low charge transfer for phosgene with physical adsorption. Constructing S- and Se-vacancy enhanced the PtSSe's sensitivity to phosgene, while it remained as physical adsorption nature. Furthermore, the adsorption stability of PtSSe toward COCl<sub>2</sub> was further improved after the introduction of Pd, Hf, Ta, W, Re, Ir dopants. The large adsorption energies and high charge transfer suggested that the adsorption mechanism of COCl<sub>2</sub> was converted to chemical adsorption. Moreover, the large gas response and suitable recovery time indicated the Re-doped Janus PtSSe monolayer could be reusable gas sensors for COCl<sub>2</sub> detection with high sensitivity at room temperature. These results offer insights into the design of gas sensors capable of detecting the highly toxic COCl<sub>2</sub> gas.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"170 ","pages":"Article 116234"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725000591","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The adsorption behaviors, electronic and gas-sensing properties of phosgene (COCl2) on perfect, defected (S- and Se-vacancy), and transition-metal doped (TMs: Pd, Hf, Ta, W, Re, Os, Ir, and Au) PtSSe monolayer were explored by density functional theory (DFT). Pristine PtSSe monolayer exhibited long adsorption distance, small adsorption energy and low charge transfer for phosgene with physical adsorption. Constructing S- and Se-vacancy enhanced the PtSSe's sensitivity to phosgene, while it remained as physical adsorption nature. Furthermore, the adsorption stability of PtSSe toward COCl2 was further improved after the introduction of Pd, Hf, Ta, W, Re, Ir dopants. The large adsorption energies and high charge transfer suggested that the adsorption mechanism of COCl2 was converted to chemical adsorption. Moreover, the large gas response and suitable recovery time indicated the Re-doped Janus PtSSe monolayer could be reusable gas sensors for COCl2 detection with high sensitivity at room temperature. These results offer insights into the design of gas sensors capable of detecting the highly toxic COCl2 gas.

Abstract Image

掺杂 4d 和 5d 过渡金属的 Janus PtSSe 可作为 COCl2 的灵敏传感器
利用密度泛函理论(DFT)研究了光气(COCl2)在完美、缺陷(S-和se -空位)和过渡金属掺杂(TMs: Pd、Hf、Ta、W、Re、Os、Ir和Au) PtSSe单层上的吸附行为、电子和气感特性。纯PtSSe单层膜对光气的物理吸附具有吸附距离长、吸附能小、电荷转移少的特点。构建S-和se空位增强了PtSSe对光气的敏感性,但仍保持物理吸附性质。此外,引入Pd、Hf、Ta、W、Re、Ir等杂质后,PtSSe对COCl2的吸附稳定性进一步提高。大的吸附能和高的电荷转移表明,COCl2的吸附机制已转化为化学吸附。此外,大的气体响应和合适的恢复时间表明,重掺杂Janus PtSSe单层可以作为室温下高灵敏度的可重复使用的COCl2气体传感器。这些结果为能够检测高毒性COCl2气体的气体传感器的设计提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信