Jiawei Shen , Qingxiao Zhou , Xinglong Yan , Weiran Li , Weiwei Ju , Chengyou Cai
{"title":"4d and 5d transition-metal doped Janus PtSSe as a viable sensitive sensor toward COCl2","authors":"Jiawei Shen , Qingxiao Zhou , Xinglong Yan , Weiran Li , Weiwei Ju , Chengyou Cai","doi":"10.1016/j.physe.2025.116234","DOIUrl":null,"url":null,"abstract":"<div><div>The adsorption behaviors, electronic and gas-sensing properties of phosgene (COCl<sub>2</sub>) on perfect, defected (S- and Se-vacancy), and transition-metal doped (TMs: Pd, Hf, Ta, W, Re, Os, Ir, and Au) PtSSe monolayer were explored by density functional theory (DFT). Pristine PtSSe monolayer exhibited long adsorption distance, small adsorption energy and low charge transfer for phosgene with physical adsorption. Constructing S- and Se-vacancy enhanced the PtSSe's sensitivity to phosgene, while it remained as physical adsorption nature. Furthermore, the adsorption stability of PtSSe toward COCl<sub>2</sub> was further improved after the introduction of Pd, Hf, Ta, W, Re, Ir dopants. The large adsorption energies and high charge transfer suggested that the adsorption mechanism of COCl<sub>2</sub> was converted to chemical adsorption. Moreover, the large gas response and suitable recovery time indicated the Re-doped Janus PtSSe monolayer could be reusable gas sensors for COCl<sub>2</sub> detection with high sensitivity at room temperature. These results offer insights into the design of gas sensors capable of detecting the highly toxic COCl<sub>2</sub> gas.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"170 ","pages":"Article 116234"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725000591","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The adsorption behaviors, electronic and gas-sensing properties of phosgene (COCl2) on perfect, defected (S- and Se-vacancy), and transition-metal doped (TMs: Pd, Hf, Ta, W, Re, Os, Ir, and Au) PtSSe monolayer were explored by density functional theory (DFT). Pristine PtSSe monolayer exhibited long adsorption distance, small adsorption energy and low charge transfer for phosgene with physical adsorption. Constructing S- and Se-vacancy enhanced the PtSSe's sensitivity to phosgene, while it remained as physical adsorption nature. Furthermore, the adsorption stability of PtSSe toward COCl2 was further improved after the introduction of Pd, Hf, Ta, W, Re, Ir dopants. The large adsorption energies and high charge transfer suggested that the adsorption mechanism of COCl2 was converted to chemical adsorption. Moreover, the large gas response and suitable recovery time indicated the Re-doped Janus PtSSe monolayer could be reusable gas sensors for COCl2 detection with high sensitivity at room temperature. These results offer insights into the design of gas sensors capable of detecting the highly toxic COCl2 gas.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures