Jingni Guo , Yu Wang , Feng Xie , Jianzhu Cao , Jiejuan Tong , Qian Ma , Wenting Jia , Minghua Lyu , Peng Li
{"title":"Chemical states and reactions of typical nuclides in the primary circuit under normal conditions of HTR-PM","authors":"Jingni Guo , Yu Wang , Feng Xie , Jianzhu Cao , Jiejuan Tong , Qian Ma , Wenting Jia , Minghua Lyu , Peng Li","doi":"10.1016/j.jnucmat.2025.155741","DOIUrl":null,"url":null,"abstract":"<div><div>The chemical states of nuclides significantly affect their behaviors in multicomponent and multiphase systems, including adsorption, desorption, deposition, diffusion, migration, and chemical reactions. Based on the design and operating parameters of the world's first pebble-bed modular high-temperature gas-cooled reactor demonstration power plant (HTR-PM), the chemical states and potential reactions of 14 typical nuclides in the primary circuit under normal operating conditions of HTR-PM were investigated under a thermodynamic framework and a newly developed two-dimensional projected phase diagram. A correlation matrix was used to quantitatively analyze the factors influencing the chemical states, including the temperature, pressure, and amount of impurity elements (C, H, O, and N). The results showed that the temperature had the greatest effect on the chemical states of the nuclides, while the pressure and N content had negligible effects. A mirror-symmetry relationship was discovered between the effects of C and O on the chemical states of typical nuclides. The phase boundary caused by this symmetry was largely influenced by the chemical states and contents of the compounds of minor elements. This study systematically provides the chemical states and reactions for typical nuclides in the primary circuit of HTR-PM, which is of great significance for research into the behaviors of fission products in advanced nuclear energy systems. The developed technologies and methods are also widely applicable to multicomponent and multi-phase chemical systems.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"608 ","pages":"Article 155741"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311525001369","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The chemical states of nuclides significantly affect their behaviors in multicomponent and multiphase systems, including adsorption, desorption, deposition, diffusion, migration, and chemical reactions. Based on the design and operating parameters of the world's first pebble-bed modular high-temperature gas-cooled reactor demonstration power plant (HTR-PM), the chemical states and potential reactions of 14 typical nuclides in the primary circuit under normal operating conditions of HTR-PM were investigated under a thermodynamic framework and a newly developed two-dimensional projected phase diagram. A correlation matrix was used to quantitatively analyze the factors influencing the chemical states, including the temperature, pressure, and amount of impurity elements (C, H, O, and N). The results showed that the temperature had the greatest effect on the chemical states of the nuclides, while the pressure and N content had negligible effects. A mirror-symmetry relationship was discovered between the effects of C and O on the chemical states of typical nuclides. The phase boundary caused by this symmetry was largely influenced by the chemical states and contents of the compounds of minor elements. This study systematically provides the chemical states and reactions for typical nuclides in the primary circuit of HTR-PM, which is of great significance for research into the behaviors of fission products in advanced nuclear energy systems. The developed technologies and methods are also widely applicable to multicomponent and multi-phase chemical systems.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.