{"title":"Aminated polystyrene and DNA strand breaks in A549, Caco-2, THP-1 and U937 human cell lines","authors":"Yuxin Liu, Peter Møller , Martin Roursgaard","doi":"10.1016/j.mrgentox.2025.503865","DOIUrl":null,"url":null,"abstract":"<div><div>Plastic is used extensively worldwide. However, plastic particles that are less than 1000 nm (i.e. nanoplastics) may be hazardous to human cells. Nanoplastics might be manufactured intentionally or be formed in the environment by degradation of larger plastic items. Ingestion and inhalation are the two most common routes of human exposure to nanoplastics, indicating that epithelial cells have direct exposure. However, immune cells will also interact with particles during tissue inflammation. An assessment of published studies suggests that polystyrene (PS) particles generate higher levels of DNA damage in immune cells compared to epithelial cells, although it has not been formally studied under the same experimental condition. To investigate this, we assessed cytotoxicity, oxidative stress and DNA strand breaks in lung epithelial (A549) cells, intestinal epithelial (Caco-2) cells, and two monocytes (THP-1 and U937) after exposure to amine-functionalized polystyrene particles (PS-NH<sub>2</sub>) with declared particle size of 240 nm. No cytotoxicity or intracellular reactive oxygen species production were found at concentrations up to 200 µg/mL. Exposure to PS-NH<sub>2</sub> was associated with glutathione depletion in A549 cells. However, there was no increase in the level of DNA strand breaks, measured by the comet assay, in any of the cell lines under standard assay conditions. Diethyl maleate treatment was used to render cells susceptible to oxidative stress. By itself, diethyl maleate treatment led to approximately 50 % glutathione depletion and increased DNA strand breaks, but additional DNA damage was not observed in cells by PS-NH<sub>2</sub> exposure in A549, Caco-2, THP-1 and U937 cells.</div></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"903 ","pages":"Article 503865"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571825000245","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plastic is used extensively worldwide. However, plastic particles that are less than 1000 nm (i.e. nanoplastics) may be hazardous to human cells. Nanoplastics might be manufactured intentionally or be formed in the environment by degradation of larger plastic items. Ingestion and inhalation are the two most common routes of human exposure to nanoplastics, indicating that epithelial cells have direct exposure. However, immune cells will also interact with particles during tissue inflammation. An assessment of published studies suggests that polystyrene (PS) particles generate higher levels of DNA damage in immune cells compared to epithelial cells, although it has not been formally studied under the same experimental condition. To investigate this, we assessed cytotoxicity, oxidative stress and DNA strand breaks in lung epithelial (A549) cells, intestinal epithelial (Caco-2) cells, and two monocytes (THP-1 and U937) after exposure to amine-functionalized polystyrene particles (PS-NH2) with declared particle size of 240 nm. No cytotoxicity or intracellular reactive oxygen species production were found at concentrations up to 200 µg/mL. Exposure to PS-NH2 was associated with glutathione depletion in A549 cells. However, there was no increase in the level of DNA strand breaks, measured by the comet assay, in any of the cell lines under standard assay conditions. Diethyl maleate treatment was used to render cells susceptible to oxidative stress. By itself, diethyl maleate treatment led to approximately 50 % glutathione depletion and increased DNA strand breaks, but additional DNA damage was not observed in cells by PS-NH2 exposure in A549, Caco-2, THP-1 and U937 cells.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.