Influence of blood-related parameters for hyperthermia-based treatments for cancer

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Gustavo Resende Fatigate , Gustavo Coelho Martins , Marcelo Lobosco , Ruy Freitas Reis
{"title":"Influence of blood-related parameters for hyperthermia-based treatments for cancer","authors":"Gustavo Resende Fatigate ,&nbsp;Gustavo Coelho Martins ,&nbsp;Marcelo Lobosco ,&nbsp;Ruy Freitas Reis","doi":"10.1016/j.jocs.2025.102556","DOIUrl":null,"url":null,"abstract":"<div><div>Hyperthermia is a cancer treatment method that uses controlled heat to induce tumor necrosis while preserving healthy tissue. This study uses computational simulations to investigate the effects of capillary network variability and blood flow dynamics on the thermal response during hyperthermia. A porous media bioheat model, coupled with uncertainty quantification (UQ) techniques using Monte Carlo simulations, was developed to analyze the influence of capillary angles, blood velocity, and capillary density on temperature distribution in biological tissues. The model demonstrates that under a range of physiological uncertainties, tumor tissues consistently reach the critical damage threshold temperature of <span><math><mrow><mn>4</mn><msup><mrow><mn>3</mn></mrow><mrow><mo>∘</mo></mrow></msup><mi>C</mi></mrow></math></span>, while healthy tissues remain below <span><math><mrow><mn>3</mn><msup><mrow><mn>8</mn></mrow><mrow><mo>∘</mo></mrow></msup><mi>C</mi></mrow></math></span>, minimizing collateral damage. To address the computational intensity of solving three-dimensional heat transfer equations with UQ analysis, high-performance computing methods were employed. A parallel implementation using CUDA achieved a speedup exceeding <span><math><mrow><mn>114</mn><mo>×</mo></mrow></math></span> compared to serial processing, while OpenMP achieved a <span><math><mrow><mn>16</mn><mo>×</mo></mrow></math></span> speedup.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"87 ","pages":"Article 102556"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187775032500033X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperthermia is a cancer treatment method that uses controlled heat to induce tumor necrosis while preserving healthy tissue. This study uses computational simulations to investigate the effects of capillary network variability and blood flow dynamics on the thermal response during hyperthermia. A porous media bioheat model, coupled with uncertainty quantification (UQ) techniques using Monte Carlo simulations, was developed to analyze the influence of capillary angles, blood velocity, and capillary density on temperature distribution in biological tissues. The model demonstrates that under a range of physiological uncertainties, tumor tissues consistently reach the critical damage threshold temperature of 43C, while healthy tissues remain below 38C, minimizing collateral damage. To address the computational intensity of solving three-dimensional heat transfer equations with UQ analysis, high-performance computing methods were employed. A parallel implementation using CUDA achieved a speedup exceeding 114× compared to serial processing, while OpenMP achieved a 16× speedup.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Science
Journal of Computational Science COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
5.50
自引率
3.00%
发文量
227
审稿时长
41 days
期刊介绍: Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory. The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation. This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods. Computational science typically unifies three distinct elements: • Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous); • Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems; • Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信