Crystallization Improvement and Defect Passivation of CsPbI2Br Perovskite Solar Cells by Introducing Additive

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Zhuowei Li, Qian Wang, Wenwen Liu, Hanxiao Gao, Yanyu Deng, Chunyu Liu* and Wenbin Guo*, 
{"title":"Crystallization Improvement and Defect Passivation of CsPbI2Br Perovskite Solar Cells by Introducing Additive","authors":"Zhuowei Li,&nbsp;Qian Wang,&nbsp;Wenwen Liu,&nbsp;Hanxiao Gao,&nbsp;Yanyu Deng,&nbsp;Chunyu Liu* and Wenbin Guo*,&nbsp;","doi":"10.1021/acsaem.5c0008410.1021/acsaem.5c00084","DOIUrl":null,"url":null,"abstract":"<p >The CsPbI<sub>2</sub>Br perovskite with a suitable bandgap demonstrates exceptional photothermal stability. Currently, the key factor for the commercialization of CsPbI<sub>2</sub>Br perovskite solar cells (PSCs) lies in enhancing their power conversion efficiency (PCE). In this study, we introduce a multifunctional additive of 4-chloroaniline (PCA) into n-i-p structured CsPbI<sub>2</sub>Br PSCs. After annealing, the crystallinity of the perovskite layer doped with PCA was significantly enhanced. Additionally, PCA existing in the perovskite layer effectively passivates defects through chemical coordination between amine and Pb<sup>2+</sup>, thereby further improving the device performance. Through effective management of crystallization and defect passivation, we observe a substantial increase in PCE from 13.44% to 16.15%. This research provides valuable insights for selecting efficient additives for inorganic PSCs.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 5","pages":"3193–3197 3193–3197"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00084","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The CsPbI2Br perovskite with a suitable bandgap demonstrates exceptional photothermal stability. Currently, the key factor for the commercialization of CsPbI2Br perovskite solar cells (PSCs) lies in enhancing their power conversion efficiency (PCE). In this study, we introduce a multifunctional additive of 4-chloroaniline (PCA) into n-i-p structured CsPbI2Br PSCs. After annealing, the crystallinity of the perovskite layer doped with PCA was significantly enhanced. Additionally, PCA existing in the perovskite layer effectively passivates defects through chemical coordination between amine and Pb2+, thereby further improving the device performance. Through effective management of crystallization and defect passivation, we observe a substantial increase in PCE from 13.44% to 16.15%. This research provides valuable insights for selecting efficient additives for inorganic PSCs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信