Nanoarchitectonic Mesoporous Ni1–xMnxO Electrodes: Charge Capacity and Oxygen Evolution Reaction Electrocatalysis in Alkaline Media

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Assel Amirzhanova Katırcı, Irmak Karakaya Durukan and Ömer Dag*, 
{"title":"Nanoarchitectonic Mesoporous Ni1–xMnxO Electrodes: Charge Capacity and Oxygen Evolution Reaction Electrocatalysis in Alkaline Media","authors":"Assel Amirzhanova Katırcı,&nbsp;Irmak Karakaya Durukan and Ömer Dag*,&nbsp;","doi":"10.1021/acsaem.4c0330510.1021/acsaem.4c03305","DOIUrl":null,"url":null,"abstract":"<p >Stable electroactive mesoporous Ni<sub>1–<i>x</i></sub>Mn<sub><i>x</i></sub>O thin-film electrodes are fabricated over FTO and graphite rods using the molten-salt-assisted self-assembly (MASA) method. Ethanol solutions of two salts ([Mn(H<sub>2</sub>O)<sub>4</sub>](NO<sub>3</sub>)<sub>2</sub> and [Ni(H<sub>2</sub>O)<sub>6</sub>](NO<sub>3</sub>)<sub>2</sub> with varying Ni(II)/Mn(II) mole ratios, 1.0 to 0.1) and two surfactants (C<sub>12</sub>H<sub>25</sub>(OCH<sub>2</sub>CH<sub>2</sub>)<sub>10</sub>OH, C<sub>12</sub>E<sub>10</sub> and C<sub>16</sub>H<sub>33</sub>N(CH<sub>3</sub>)<sub>3</sub>Br, CTAB) are coated over a conducting substrate (FTO and graphite rod) to assemble the salt–surfactant lyotropic liquid crystalline (LLC) mesophase that is calcined to obtain a mesoporous Ni<sub>1–<i>x</i></sub>Mn<sub><i>x</i></sub>O thin-film electrode. Ni<sub>1–<i>x</i></sub>Mn<sub><i>x</i></sub>O is a solid solution up to <i>x</i> of 0.7, but it transforms the NiMnO<sub>3</sub>, Mn<sub>3</sub>O<sub>4</sub>, and Mn<sub>2</sub>O<sub>3</sub> phases in the samples with <i>x</i> values of 0.5 and higher at higher annealing temperatures. FTO and graphite-coated (F-Ni<sub>1–<i>x</i></sub>Mn<sub><i>x</i></sub>O and G-Ni<sub>1–<i>x</i></sub>Mn<sub><i>x</i></sub>O) electrodes have a high charge capacity, but the FTO-coated electrodes are unstable and undergo degradation. They display an increasing charge capacity during early CV cycles (or consecutive GCD measurements) but decay in capacity over long-term experiments. The G-Ni<sub>1–<i>x</i></sub>Mn<sub><i>x</i></sub>O electrodes are more robust and display high charge capacities (958 C/g in pure NiO and 720 C/g in Ni<sub>0.9</sub>Mn<sub>0.1</sub>O, close to the theoretical values). During the electrochemical tests, both pure NiO and Ni<sub>1–<i>x</i></sub>Mn<sub><i>x</i></sub>O electrodes transform to core-NiO/shell-Ni(OH)<sub>2</sub> and core-Ni<sub>1–<i>x</i></sub>Mn<sub><i>x</i></sub>O/shell-Ni(OH)<sub>2</sub> structures on the pore walls, respectively. The shell thickness decreases from 2.0 nm in pure NiO to 1.1 nm with 10% Mn(II) addition in Ni<sub>0.9</sub>Mn<sub>0.1</sub>O at 350 °C. Moreover, the shell thickness is also dependent on the pore-wall thickness that increases exponentially with annealing temperature (from 4.4 to 27.1 nm in pure NiO and 4.0 to 12 nm in Ni<sub>0.9</sub>Mn<sub>0.1</sub>O by increasing the temperature from 350 to 500 °C, respectively). It increases from 2.0 to 4.5 nm in pure NiO and 1.1 to 1.5 nm in the Ni<sub>0.9</sub>Mn<sub>0.1</sub>O electrodes at those temperatures, respectively, and determines the charge capacity of the electrodes. The addition of manganese significantly improves the stabilities of the electrodes but almost has no effect on the overpotential of the electrodes. Even though the charge capacity depends on the annealing temperature, OER performance almost shows no effect on the annealing temperature.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 5","pages":"3162–3177 3162–3177"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03305","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Stable electroactive mesoporous Ni1–xMnxO thin-film electrodes are fabricated over FTO and graphite rods using the molten-salt-assisted self-assembly (MASA) method. Ethanol solutions of two salts ([Mn(H2O)4](NO3)2 and [Ni(H2O)6](NO3)2 with varying Ni(II)/Mn(II) mole ratios, 1.0 to 0.1) and two surfactants (C12H25(OCH2CH2)10OH, C12E10 and C16H33N(CH3)3Br, CTAB) are coated over a conducting substrate (FTO and graphite rod) to assemble the salt–surfactant lyotropic liquid crystalline (LLC) mesophase that is calcined to obtain a mesoporous Ni1–xMnxO thin-film electrode. Ni1–xMnxO is a solid solution up to x of 0.7, but it transforms the NiMnO3, Mn3O4, and Mn2O3 phases in the samples with x values of 0.5 and higher at higher annealing temperatures. FTO and graphite-coated (F-Ni1–xMnxO and G-Ni1–xMnxO) electrodes have a high charge capacity, but the FTO-coated electrodes are unstable and undergo degradation. They display an increasing charge capacity during early CV cycles (or consecutive GCD measurements) but decay in capacity over long-term experiments. The G-Ni1–xMnxO electrodes are more robust and display high charge capacities (958 C/g in pure NiO and 720 C/g in Ni0.9Mn0.1O, close to the theoretical values). During the electrochemical tests, both pure NiO and Ni1–xMnxO electrodes transform to core-NiO/shell-Ni(OH)2 and core-Ni1–xMnxO/shell-Ni(OH)2 structures on the pore walls, respectively. The shell thickness decreases from 2.0 nm in pure NiO to 1.1 nm with 10% Mn(II) addition in Ni0.9Mn0.1O at 350 °C. Moreover, the shell thickness is also dependent on the pore-wall thickness that increases exponentially with annealing temperature (from 4.4 to 27.1 nm in pure NiO and 4.0 to 12 nm in Ni0.9Mn0.1O by increasing the temperature from 350 to 500 °C, respectively). It increases from 2.0 to 4.5 nm in pure NiO and 1.1 to 1.5 nm in the Ni0.9Mn0.1O electrodes at those temperatures, respectively, and determines the charge capacity of the electrodes. The addition of manganese significantly improves the stabilities of the electrodes but almost has no effect on the overpotential of the electrodes. Even though the charge capacity depends on the annealing temperature, OER performance almost shows no effect on the annealing temperature.

Abstract Image

利用熔盐辅助自组装(MASA)方法在 FTO 和石墨棒上制造出了稳定的电活性介孔 Ni1-xMnxO 薄膜电极。在导电基底(FTO 和石墨棒)上涂覆两种表面活性剂(C12H25(OCH2CH2)10OH,C12E10 和 C16H33N(CH3)3Br,CTAB),形成盐-表面活性剂溶液结晶(LLC)介相,经煅烧得到介孔 Ni1-xMnxO 薄膜电极。在 x 值为 0.7 时,Ni1-xMnxO 是一种固溶体,但在 x 值为 0.5 或更高的退火温度下,Ni1-xMnxO 会转变为 NiMnO3、Mn3O4 和 Mn2O3 相。FTO 和石墨涂层(F-Ni1-xMnxO 和 G-Ni1-xMnxO)电极具有很高的电荷容量,但 FTO 涂层电极不稳定,会发生降解。在早期的 CV 循环(或连续的 GCD 测量)中,它们的电荷容量不断增加,但在长期实验中,容量会逐渐衰减。G-Ni1-xMnxO 电极更加坚固,显示出很高的电荷容量(纯 NiO 为 958 C/g,Ni0.9Mn0.1O 为 720 C/g,接近理论值)。在电化学测试过程中,纯 NiO 和 Ni1-xMnxO 电极的孔壁分别转变为核-NiO/壳-Ni(OH)2 和核-Ni1-xMnxO/壳-Ni(OH)2 结构。在 350 °C 时,Ni0.9Mn0.1O 中添加 10%的 Mn(II)后,壳厚度从纯 NiO 中的 2.0 nm 减小到 1.1 nm。此外,壳厚度还取决于孔壁厚度,随着退火温度的升高,孔壁厚度呈指数增长(温度从 350 ℃ 升至 500 ℃ 时,纯 NiO 的孔壁厚度从 4.4 纳米增至 27.1 纳米,Ni0.9Mn0.1O 的孔壁厚度从 4.0 纳米增至 12 纳米)。在这些温度下,纯 NiO 中的锰含量从 2.0 纳米增加到 4.5 纳米,Ni0.9Mn0.1O 电极中的锰含量从 1.1 纳米增加到 1.5 纳米,这决定了电极的电荷容量。锰的加入大大提高了电极的稳定性,但对电极的过电位几乎没有影响。尽管电荷容量取决于退火温度,但 OER 性能几乎不受退火温度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信