Constructing a 2D Heterointerface of MoS2/MnIn2S4 with Improved Interfacial Charge Carrier Transfer for Photocatalytic H2O2 Production

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Uttam Kumar, Emmanuel Picheau, Huanran Li, Zihan Zhang, Takayuki Kikuchi, Indrajit Sinha* and Renzhi Ma*, 
{"title":"Constructing a 2D Heterointerface of MoS2/MnIn2S4 with Improved Interfacial Charge Carrier Transfer for Photocatalytic H2O2 Production","authors":"Uttam Kumar,&nbsp;Emmanuel Picheau,&nbsp;Huanran Li,&nbsp;Zihan Zhang,&nbsp;Takayuki Kikuchi,&nbsp;Indrajit Sinha* and Renzhi Ma*,&nbsp;","doi":"10.1021/acsaem.4c0329610.1021/acsaem.4c03296","DOIUrl":null,"url":null,"abstract":"<p >Photocatalytic oxygen reduction to H<sub>2</sub>O<sub>2</sub> is a promising sustainable solar fuel production pathway. Photocatalysts with heterostructure interfaces can suppress charge carrier recombination and endow photogenerated electrons and holes with improved redox potentials. This study develops a heterostructured two-dimensional (2D) MoS<sub>2</sub>/MnIn<sub>2</sub>S<sub>4</sub> photocatalyst for photocatalytic H<sub>2</sub>O<sub>2</sub> production. The photocatalyst with an optimal loading of MnIn<sub>2</sub>S<sub>4</sub> on 2D MoS<sub>2</sub> nanosheets demonstrates the maximum H<sub>2</sub>O<sub>2</sub> production rate of 606.7 μmol g<sup>–1</sup> h<sup>–1</sup>, approximately 4.2 and 5 times higher than pristine 2D MoS<sub>2</sub> and MnIn<sub>2</sub>S<sub>4</sub>, respectively. The synergistic interaction between 2D MoS<sub>2</sub> nanosheets and MnIn<sub>2</sub>S<sub>4</sub> results in enhanced charge separation, optical absorption, stability, and recyclability. Reaction pathway studies reveal that H<sub>2</sub>O<sub>2</sub> production is through a sequential single-electron O<sub>2</sub> reduction reaction by accumulated photogenerated electrons on the conduction band of the 2D MoS<sub>2</sub>/MnIn<sub>2</sub>S<sub>4</sub> heterostructure. This work presents a noble-metal-free photocatalyst responsive to visible light for solar H<sub>2</sub>O<sub>2</sub> generation.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 5","pages":"3107–3119 3107–3119"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaem.4c03296","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03296","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic oxygen reduction to H2O2 is a promising sustainable solar fuel production pathway. Photocatalysts with heterostructure interfaces can suppress charge carrier recombination and endow photogenerated electrons and holes with improved redox potentials. This study develops a heterostructured two-dimensional (2D) MoS2/MnIn2S4 photocatalyst for photocatalytic H2O2 production. The photocatalyst with an optimal loading of MnIn2S4 on 2D MoS2 nanosheets demonstrates the maximum H2O2 production rate of 606.7 μmol g–1 h–1, approximately 4.2 and 5 times higher than pristine 2D MoS2 and MnIn2S4, respectively. The synergistic interaction between 2D MoS2 nanosheets and MnIn2S4 results in enhanced charge separation, optical absorption, stability, and recyclability. Reaction pathway studies reveal that H2O2 production is through a sequential single-electron O2 reduction reaction by accumulated photogenerated electrons on the conduction band of the 2D MoS2/MnIn2S4 heterostructure. This work presents a noble-metal-free photocatalyst responsive to visible light for solar H2O2 generation.

光催化氧还原为 H2O2 是一种前景广阔的可持续太阳能燃料生产途径。具有异质结构界面的光催化剂可以抑制电荷载流子重组,并赋予光生电子和空穴更好的氧化还原电位。本研究开发了一种用于光催化生产 H2O2 的异质结构二维 (2D) MoS2/MnIn2S4 光催化剂。在二维 MoS2 纳米片上最佳负载 MnIn2S4 的光催化剂的 H2O2 生成率最高可达 606.7 μmol g-1 h-1,分别是原始二维 MoS2 和 MnIn2S4 的 4.2 倍和 5 倍。二维 MoS2 纳米片与 MnIn2S4 之间的协同作用增强了电荷分离、光吸收、稳定性和可回收性。反应路径研究表明,H2O2 的产生是通过二维 MoS2/MnIn2S4 异质结构导带上累积的光生电子进行的单电子顺序 O2 还原反应实现的。这项研究成果提出了一种不含惰性金属的光催化剂,它能对可见光做出反应,用于太阳能 H2O2 生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信