WO3/CuWO4 Ratio Controls Open-Circuit Photovoltage and Photocurrent in Type II Heterojunction Solar Fuel Photoelectrodes

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Lucas Caniati Escaliante, Nilton Francelosi Azevedo Neto, Hervin Errol Mendoza, Chengcan Xiao, Rajesh Kandel, Jose Humberto Dias da Silva and Frank E. Osterloh*, 
{"title":"WO3/CuWO4 Ratio Controls Open-Circuit Photovoltage and Photocurrent in Type II Heterojunction Solar Fuel Photoelectrodes","authors":"Lucas Caniati Escaliante,&nbsp;Nilton Francelosi Azevedo Neto,&nbsp;Hervin Errol Mendoza,&nbsp;Chengcan Xiao,&nbsp;Rajesh Kandel,&nbsp;Jose Humberto Dias da Silva and Frank E. Osterloh*,&nbsp;","doi":"10.1021/acsaem.5c0016010.1021/acsaem.5c00160","DOIUrl":null,"url":null,"abstract":"<p >WO<sub>3</sub>/CuWO<sub>4</sub> photoelectrodes for the oxygen evolution reaction benefit from a type II heterojunction for charge separation. However, the impact of the WO<sub>3</sub>/CuWO<sub>4</sub> ratio on the photocurrent and the photovoltage is not clear. To probe the effect of composition, Cu<sub><i>x</i></sub>W<sub>1–<i>x</i></sub>O<sub><i>y</i></sub> thin films with variable W:Cu ratios were prepared on FTO by reactive magnetron cosputtering of W and Cu, followed by air annealing at 500 °C. EDS, XRD, Rietveld refinement, and Raman spectroscopy confirm the presence of crystalline WO<sub>3</sub> and CuWO<sub>4</sub> in the W-rich films and increasing amounts of amorphous copper oxides in the Cu-rich films. Band gaps were determined by optical absorption spectroscopy, surface photovoltage spectroscopy (SPS), and photoaction spectra. Optical band gaps are found to decrease from 2.7 to 1.2 eV with increasing copper oxide content. SPS reveals n-type semiconductor photoanode behavior for WO<sub>3</sub>/CuWO<sub>4</sub> samples and p-type photocathode behavior for CuO<sub><i>x</i></sub>-rich films. Photoelectrochemical experiments confirm stable water oxidation with Faraday efficiency near unity for all W-rich films and photocurrents that are increasing with CuWO<sub>4</sub> content. Optimal performance is seen for WO<sub>3</sub>/CuWO<sub>4</sub> mixed phases containing 47–75 mass% CuWO<sub>4</sub>. These compositions maximize charge separation at the type II heterojunction interface between the two materials. Additionally, according to incident photon-to-current efficiency (IPCE) data, WO<sub>3</sub> improves photon conversion below 350 nm, while CuWO<sub>4</sub> improves conversion at 450–525 nm. Overall, this work shows for the first time how the WO<sub>3</sub>/CuWO<sub>4</sub> ratio controls the photovoltage and the photocurrent in type II heterojunction solar fuel photoelectrodes and how copper oxides in the copper-rich films severely degrade the performance. These results are useful in the context of bulk-heterojunction electrodes for the conversion of solar energy into fuels.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 5","pages":"3198–3208 3198–3208"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00160","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

WO3/CuWO4 photoelectrodes for the oxygen evolution reaction benefit from a type II heterojunction for charge separation. However, the impact of the WO3/CuWO4 ratio on the photocurrent and the photovoltage is not clear. To probe the effect of composition, CuxW1–xOy thin films with variable W:Cu ratios were prepared on FTO by reactive magnetron cosputtering of W and Cu, followed by air annealing at 500 °C. EDS, XRD, Rietveld refinement, and Raman spectroscopy confirm the presence of crystalline WO3 and CuWO4 in the W-rich films and increasing amounts of amorphous copper oxides in the Cu-rich films. Band gaps were determined by optical absorption spectroscopy, surface photovoltage spectroscopy (SPS), and photoaction spectra. Optical band gaps are found to decrease from 2.7 to 1.2 eV with increasing copper oxide content. SPS reveals n-type semiconductor photoanode behavior for WO3/CuWO4 samples and p-type photocathode behavior for CuOx-rich films. Photoelectrochemical experiments confirm stable water oxidation with Faraday efficiency near unity for all W-rich films and photocurrents that are increasing with CuWO4 content. Optimal performance is seen for WO3/CuWO4 mixed phases containing 47–75 mass% CuWO4. These compositions maximize charge separation at the type II heterojunction interface between the two materials. Additionally, according to incident photon-to-current efficiency (IPCE) data, WO3 improves photon conversion below 350 nm, while CuWO4 improves conversion at 450–525 nm. Overall, this work shows for the first time how the WO3/CuWO4 ratio controls the photovoltage and the photocurrent in type II heterojunction solar fuel photoelectrodes and how copper oxides in the copper-rich films severely degrade the performance. These results are useful in the context of bulk-heterojunction electrodes for the conversion of solar energy into fuels.

Abstract Image

WO3/CuWO4比值控制II型异质结太阳能燃料光电极开路光电压和光电流
用于析氧反应的WO3/CuWO4光电极得益于II型异质结的电荷分离。然而,WO3/CuWO4配比对光电流和光电压的影响尚不清楚。为了探究成分的影响,采用反应磁控溅射W和Cu,在FTO上制备了可变W:Cu比的CuxW1-xOy薄膜,然后在500℃下进行空气退火。EDS, XRD, Rietveld细化和Raman光谱证实富w薄膜中存在结晶WO3和CuWO4,富cu薄膜中无定形铜氧化物的数量增加。采用光吸收光谱、表面光电压光谱和光作用光谱测定带隙。随着氧化铜含量的增加,光学带隙从2.7 eV减小到1.2 eV。SPS揭示了WO3/CuWO4样品的n型半导体光阳极行为和富cuox薄膜的p型光电阴极行为。光电化学实验证实,所有富w薄膜的水氧化稳定,法拉第效率接近统一,光电流随CuWO4含量的增加而增加。CuWO4质量%为47 ~ 75%的WO3/CuWO4混合相性能最佳。这些成分在两种材料之间的II型异质结界面上最大化了电荷分离。此外,根据入射光子电流效率(IPCE)数据,WO3提高了350 nm以下的光子转换,而CuWO4提高了450-525 nm的转换。总的来说,这项工作首次展示了WO3/CuWO4比例如何控制II型异质结太阳能燃料光电极中的光电压和光电流,以及富铜薄膜中的铜氧化物如何严重降低性能。这些结果在将太阳能转化为燃料的体异质结电极的背景下是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信