Modelling the Bauschinger effect in copper during preliminary load cycles

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alvaro Martinez-Pechero , Eralp Demir , Chris Hardie , Yevhen Zayachuk , Anna Widdowson , Edmund Tarleton
{"title":"Modelling the Bauschinger effect in copper during preliminary load cycles","authors":"Alvaro Martinez-Pechero ,&nbsp;Eralp Demir ,&nbsp;Chris Hardie ,&nbsp;Yevhen Zayachuk ,&nbsp;Anna Widdowson ,&nbsp;Edmund Tarleton","doi":"10.1016/j.actamat.2025.120886","DOIUrl":null,"url":null,"abstract":"<div><div>This research utilizes established cyclic deformation models to simulate the Bauschinger effect observed in copper monocrystal cantilever experiments during the initial bending and straightening phases. Crystal plasticity finite element simulations employing <em>Armstrong-Frederick</em>, <em>Orowan-Sleeswyk</em>, and various other backstress models have drawbacks to reproduce the experimental force–displacement curves accurately since they are not able to reproduce the isotropic hardening measured during cantilever straightening. However, the <em>Armstrong-Frederick</em> model combined with <em>Voce-type hardening</em> and a newly proposed <em>modified Orowan-Sleeswyk</em> model has proven to be effective. In this work, we propose a <em>modified Orowan-Sleeswyk</em> model, based on recent studies, where not all the geometrically necessary dislocations (GND) recombine during the straightening phase, but instead reorient to achieve a net zero-strain gradient with ongoing hardening during load reversal.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"289 ","pages":"Article 120886"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425001788","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This research utilizes established cyclic deformation models to simulate the Bauschinger effect observed in copper monocrystal cantilever experiments during the initial bending and straightening phases. Crystal plasticity finite element simulations employing Armstrong-Frederick, Orowan-Sleeswyk, and various other backstress models have drawbacks to reproduce the experimental force–displacement curves accurately since they are not able to reproduce the isotropic hardening measured during cantilever straightening. However, the Armstrong-Frederick model combined with Voce-type hardening and a newly proposed modified Orowan-Sleeswyk model has proven to be effective. In this work, we propose a modified Orowan-Sleeswyk model, based on recent studies, where not all the geometrically necessary dislocations (GND) recombine during the straightening phase, but instead reorient to achieve a net zero-strain gradient with ongoing hardening during load reversal.

Abstract Image

Abstract Image

初步负载循环期间铜的鲍辛格效应建模
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信