Immersive Analytics as a Support Medium for Data-driven Monitoring in Hydropower.

Marina Lima Medeiros, Hannes Kaufmann, Johanna Schmidt
{"title":"Immersive Analytics as a Support Medium for Data-driven Monitoring in Hydropower.","authors":"Marina Lima Medeiros, Hannes Kaufmann, Johanna Schmidt","doi":"10.1109/TVCG.2025.3549157","DOIUrl":null,"url":null,"abstract":"<p><p>Hydropower turbines are large-scale equipment essential to sustainable energy supply chains, and engineers have few opportunities to examine their internal structure. Our Immersive Analytics (IA) application is part of a research project that combines and compares simulated water turbine flows and sensor-measured data, looking for data-driven predictions of the lifetime of the mechanical parts of hydroelectric power plants. Our prototype combines spatial and abstract data in an immersive environment in which the user can navigate through a full-scale model of a water turbine, view simulated water flows of three different energy supply conditions, and visualize and interact with sensor-collected data situated at the reference position of the sensors in the actual turbine. In this paper, we detail our design process, which resulted from consultations with domain experts and a literature review, give an overview of our prototype, and present its evaluation, resulting from semi-structured interviews with experts and qualitative thematic analysis. Our findings confirm the current literature that IA applications add value to the presentation and analysis of situated data, as they show that we advance in the design directions for IA applications for domain experts that combine abstract and spatial data, with conclusions on how to avoid skepticism from such professionals.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3549157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydropower turbines are large-scale equipment essential to sustainable energy supply chains, and engineers have few opportunities to examine their internal structure. Our Immersive Analytics (IA) application is part of a research project that combines and compares simulated water turbine flows and sensor-measured data, looking for data-driven predictions of the lifetime of the mechanical parts of hydroelectric power plants. Our prototype combines spatial and abstract data in an immersive environment in which the user can navigate through a full-scale model of a water turbine, view simulated water flows of three different energy supply conditions, and visualize and interact with sensor-collected data situated at the reference position of the sensors in the actual turbine. In this paper, we detail our design process, which resulted from consultations with domain experts and a literature review, give an overview of our prototype, and present its evaluation, resulting from semi-structured interviews with experts and qualitative thematic analysis. Our findings confirm the current literature that IA applications add value to the presentation and analysis of situated data, as they show that we advance in the design directions for IA applications for domain experts that combine abstract and spatial data, with conclusions on how to avoid skepticism from such professionals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信