The Impact of Stay-At-Home Mandates on Uncertainty and Sentiments: Quasi-Experimental Study.

IF 5.8 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Carolina Biliotti, Nicolò Fraccaroli, Michelangelo Puliga, Falco J Bargagli-Stoffi, Massimo Riccaboni
{"title":"The Impact of Stay-At-Home Mandates on Uncertainty and Sentiments: Quasi-Experimental Study.","authors":"Carolina Biliotti, Nicolò Fraccaroli, Michelangelo Puliga, Falco J Bargagli-Stoffi, Massimo Riccaboni","doi":"10.2196/64667","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As the spread of the SARS-CoV-2 virus coincided with lockdown measures, it is challenging to distinguish public reactions to lockdowns from responses to COVID-19 itself. Beyond the direct impact on health, lockdowns may have worsened public sentiment toward politics and the economy or even heightened dissatisfaction with health care, imposing a significant cost on both the public and policy makers.</p><p><strong>Objective: </strong>This study aims to analyze the causal effect of COVID-19 lockdown policies on various dimensions of sentiment and uncertainty, using the Italian lockdown of February 2020 as a quasi-experiment. At the time of implementation, communities inside and just outside the lockdown area were equally exposed to COVID-19, enabling a quasi-random distribution of the lockdown. Additionally, both areas had similar socioeconomic and demographic characteristics before the lockdown, suggesting that the delineation of the strict lockdown zone approximates a randomized experiment. This approach allows us to isolate the causal effects of the lockdown on public emotions, distinguishing the impact of the policy itself from changes driven by the virus's spread.</p><p><strong>Methods: </strong>We used Twitter data (N=24,261), natural language models, and a difference-in-differences approach to compare changes in sentiment and uncertainty inside (n=1567) and outside (n=22,694) the lockdown areas before and after the lockdown began. By fine-tuning the AlBERTo (Italian BERT optimized) pretrained model, we analyzed emotions expressed in tweets from 1124 unique users. Additionally, we applied dictionary-based methods to categorize tweets into 4 dimensions-economy, health, politics, and lockdown policy-to assess the corresponding emotional reactions. This approach enabled us to measure the direct impact of local policies on public sentiment using geo-referenced social media and can be easily adapted for other policy impact analyses.</p><p><strong>Results: </strong>Our analysis shows that the lockdown had no significant effect on economic uncertainty (b=0.005, SE 0.007, t125=0.70; P=.48) or negative economic sentiment (b=-0.011, SE 0.0089, t125=-1.32; P=.19). However, it increased uncertainty about health (b=0.036, SE 0.0065, t125=5.55; P<.001) and lockdown policy (b=0.026, SE 0.006, t125=4.47; P<.001), as well as negative sentiment toward politics (b=0.025, SE 0.011, t125=2.33; P=.02), indicating that lockdowns have broad externalities beyond health. Our key findings are confirmed through a series of robustness checks.</p><p><strong>Conclusions: </strong>Our findings reveal that lockdowns have broad externalities extending beyond health. By heightening health concerns and negative political sentiment, policy makers have struggled to secure explicit public support for government measures, which may discourage future leaders from implementing timely stay-at-home policies. These results highlight the need for authorities to leverage such insights to enhance future policies and communication strategies, reducing uncertainty and mitigating social panic.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e64667"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/64667","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: As the spread of the SARS-CoV-2 virus coincided with lockdown measures, it is challenging to distinguish public reactions to lockdowns from responses to COVID-19 itself. Beyond the direct impact on health, lockdowns may have worsened public sentiment toward politics and the economy or even heightened dissatisfaction with health care, imposing a significant cost on both the public and policy makers.

Objective: This study aims to analyze the causal effect of COVID-19 lockdown policies on various dimensions of sentiment and uncertainty, using the Italian lockdown of February 2020 as a quasi-experiment. At the time of implementation, communities inside and just outside the lockdown area were equally exposed to COVID-19, enabling a quasi-random distribution of the lockdown. Additionally, both areas had similar socioeconomic and demographic characteristics before the lockdown, suggesting that the delineation of the strict lockdown zone approximates a randomized experiment. This approach allows us to isolate the causal effects of the lockdown on public emotions, distinguishing the impact of the policy itself from changes driven by the virus's spread.

Methods: We used Twitter data (N=24,261), natural language models, and a difference-in-differences approach to compare changes in sentiment and uncertainty inside (n=1567) and outside (n=22,694) the lockdown areas before and after the lockdown began. By fine-tuning the AlBERTo (Italian BERT optimized) pretrained model, we analyzed emotions expressed in tweets from 1124 unique users. Additionally, we applied dictionary-based methods to categorize tweets into 4 dimensions-economy, health, politics, and lockdown policy-to assess the corresponding emotional reactions. This approach enabled us to measure the direct impact of local policies on public sentiment using geo-referenced social media and can be easily adapted for other policy impact analyses.

Results: Our analysis shows that the lockdown had no significant effect on economic uncertainty (b=0.005, SE 0.007, t125=0.70; P=.48) or negative economic sentiment (b=-0.011, SE 0.0089, t125=-1.32; P=.19). However, it increased uncertainty about health (b=0.036, SE 0.0065, t125=5.55; P<.001) and lockdown policy (b=0.026, SE 0.006, t125=4.47; P<.001), as well as negative sentiment toward politics (b=0.025, SE 0.011, t125=2.33; P=.02), indicating that lockdowns have broad externalities beyond health. Our key findings are confirmed through a series of robustness checks.

Conclusions: Our findings reveal that lockdowns have broad externalities extending beyond health. By heightening health concerns and negative political sentiment, policy makers have struggled to secure explicit public support for government measures, which may discourage future leaders from implementing timely stay-at-home policies. These results highlight the need for authorities to leverage such insights to enhance future policies and communication strategies, reducing uncertainty and mitigating social panic.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.40
自引率
5.40%
发文量
654
审稿时长
1 months
期刊介绍: The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades. As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor. Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信