GPT-4 as a Clinical Decision Support Tool in Ischemic Stroke Management: Evaluation Study.

JMIR AI Pub Date : 2025-03-07 DOI:10.2196/60391
Amit Haim Shmilovitch, Mark Katson, Michal Cohen-Shelly, Shlomi Peretz, Dvir Aran, Shahar Shelly
{"title":"GPT-4 as a Clinical Decision Support Tool in Ischemic Stroke Management: Evaluation Study.","authors":"Amit Haim Shmilovitch, Mark Katson, Michal Cohen-Shelly, Shlomi Peretz, Dvir Aran, Shahar Shelly","doi":"10.2196/60391","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cerebrovascular diseases are the second most common cause of death worldwide and one of the major causes of disability burden. Advancements in artificial intelligence have the potential to revolutionize health care delivery, particularly in critical decision-making scenarios such as ischemic stroke management.</p><p><strong>Objective: </strong>This study aims to evaluate the effectiveness of GPT-4 in providing clinical support for emergency department neurologists by comparing its recommendations with expert opinions and real-world outcomes in acute ischemic stroke management.</p><p><strong>Methods: </strong>A cohort of 100 patients with acute stroke symptoms was retrospectively reviewed. Data used for decision-making included patients' history, clinical evaluation, imaging study results, and other relevant details. Each case was independently presented to GPT-4, which provided scaled recommendations (1-7) regarding the appropriateness of treatment, the use of tissue plasminogen activator, and the need for endovascular thrombectomy. Additionally, GPT-4 estimated the 90-day mortality probability for each patient and elucidated its reasoning for each recommendation. The recommendations were then compared with a stroke specialist's opinion and actual treatment decisions.</p><p><strong>Results: </strong>In our cohort of 100 patients, treatment recommendations by GPT-4 showed strong agreement with expert opinion (area under the curve [AUC] 0.85, 95% CI 0.77-0.93) and real-world treatment decisions (AUC 0.80, 95% CI 0.69-0.91). GPT-4 showed near-perfect agreement with real-world decisions in recommending endovascular thrombectomy (AUC 0.94, 95% CI 0.89-0.98) and strong agreement for tissue plasminogen activator treatment (AUC 0.77, 95% CI 0.68-0.86). Notably, in some cases, GPT-4 recommended more aggressive treatment than human experts, with 11 instances where GPT-4 suggested tissue plasminogen activator use against expert opinion. For mortality prediction, GPT-4 accurately identified 10 (77%) out of 13 deaths within its top 25 high-risk predictions (AUC 0.89, 95% CI 0.8077-0.9739; hazard ratio 6.98, 95% CI 2.88-16.9; P<.001), outperforming supervised machine learning models such as PRACTICE (AUC 0.70; log-rank P=.02) and PREMISE (AUC 0.77; P=.07).</p><p><strong>Conclusions: </strong>This study demonstrates the potential of GPT-4 as a viable clinical decision-support tool in the management of acute stroke. Its ability to provide explainable recommendations without requiring structured data input aligns well with the routine workflows of treating physicians. However, the tendency toward more aggressive treatment recommendations highlights the importance of human oversight in clinical decision-making. Future studies should focus on prospective validations and exploring the safe integration of such artificial intelligence tools into clinical practice.</p>","PeriodicalId":73551,"journal":{"name":"JMIR AI","volume":"4 ","pages":"e60391"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928773/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/60391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cerebrovascular diseases are the second most common cause of death worldwide and one of the major causes of disability burden. Advancements in artificial intelligence have the potential to revolutionize health care delivery, particularly in critical decision-making scenarios such as ischemic stroke management.

Objective: This study aims to evaluate the effectiveness of GPT-4 in providing clinical support for emergency department neurologists by comparing its recommendations with expert opinions and real-world outcomes in acute ischemic stroke management.

Methods: A cohort of 100 patients with acute stroke symptoms was retrospectively reviewed. Data used for decision-making included patients' history, clinical evaluation, imaging study results, and other relevant details. Each case was independently presented to GPT-4, which provided scaled recommendations (1-7) regarding the appropriateness of treatment, the use of tissue plasminogen activator, and the need for endovascular thrombectomy. Additionally, GPT-4 estimated the 90-day mortality probability for each patient and elucidated its reasoning for each recommendation. The recommendations were then compared with a stroke specialist's opinion and actual treatment decisions.

Results: In our cohort of 100 patients, treatment recommendations by GPT-4 showed strong agreement with expert opinion (area under the curve [AUC] 0.85, 95% CI 0.77-0.93) and real-world treatment decisions (AUC 0.80, 95% CI 0.69-0.91). GPT-4 showed near-perfect agreement with real-world decisions in recommending endovascular thrombectomy (AUC 0.94, 95% CI 0.89-0.98) and strong agreement for tissue plasminogen activator treatment (AUC 0.77, 95% CI 0.68-0.86). Notably, in some cases, GPT-4 recommended more aggressive treatment than human experts, with 11 instances where GPT-4 suggested tissue plasminogen activator use against expert opinion. For mortality prediction, GPT-4 accurately identified 10 (77%) out of 13 deaths within its top 25 high-risk predictions (AUC 0.89, 95% CI 0.8077-0.9739; hazard ratio 6.98, 95% CI 2.88-16.9; P<.001), outperforming supervised machine learning models such as PRACTICE (AUC 0.70; log-rank P=.02) and PREMISE (AUC 0.77; P=.07).

Conclusions: This study demonstrates the potential of GPT-4 as a viable clinical decision-support tool in the management of acute stroke. Its ability to provide explainable recommendations without requiring structured data input aligns well with the routine workflows of treating physicians. However, the tendency toward more aggressive treatment recommendations highlights the importance of human oversight in clinical decision-making. Future studies should focus on prospective validations and exploring the safe integration of such artificial intelligence tools into clinical practice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信