Performance Improvement of a Natural Language Processing Tool for Extracting Patient Narratives Related to Medical States From Japanese Pharmaceutical Care Records by Increasing the Amount of Training Data: Natural Language Processing Analysis and Validation Study.

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS
Yukiko Ohno, Tohru Aomori, Tomohiro Nishiyama, Riri Kato, Reina Fujiki, Haruki Ishikawa, Keisuke Kiyomiya, Minae Isawa, Mayumi Mochizuki, Eiji Aramaki, Hisakazu Ohtani
{"title":"Performance Improvement of a Natural Language Processing Tool for Extracting Patient Narratives Related to Medical States From Japanese Pharmaceutical Care Records by Increasing the Amount of Training Data: Natural Language Processing Analysis and Validation Study.","authors":"Yukiko Ohno, Tohru Aomori, Tomohiro Nishiyama, Riri Kato, Reina Fujiki, Haruki Ishikawa, Keisuke Kiyomiya, Minae Isawa, Mayumi Mochizuki, Eiji Aramaki, Hisakazu Ohtani","doi":"10.2196/68863","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patients' oral expressions serve as valuable sources of clinical information to improve pharmacotherapy. Natural language processing (NLP) is a useful approach for analyzing unstructured text data, such as patient narratives. However, few studies have focused on using NLP for narratives in the Japanese language.</p><p><strong>Objective: </strong>We aimed to develop a high-performance NLP system for extracting clinical information from patient narratives by examining the performance progression with a gradual increase in the amount of training data.</p><p><strong>Methods: </strong>We used subjective texts from the pharmaceutical care records of Keio University Hospital from April 1, 2018, to March 31, 2019, comprising 12,004 records from 6559 cases. After preprocessing, we annotated diseases and symptoms within the texts. We then trained and evaluated a deep learning model (bidirectional encoder representations from transformers combined with a conditional random field [BERT-CRF]) through 10-fold cross-validation. The annotated data were divided into 10 subsets, and the amount of training data was progressively increased over 10 steps. We also analyzed the causes of errors. Finally, we applied the developed system to the analysis of case report texts to evaluate its usability for texts from other sources.</p><p><strong>Results: </strong>The F<sub>1</sub>-score of the system improved from 0.67 to 0.82 as the amount of training data increased from 1200 to 12,004 records. The F<sub>1</sub>-score reached 0.78 with 3600 records and was largely similar thereafter. As performance improved, errors from incorrect extractions decreased significantly, which resulted in an increase in precision. For case reports, the F<sub>1</sub>-score also increased from 0.34 to 0.41 as the training dataset expanded from 1200 to 12,004 records. Performance was lower for extracting symptoms from case report texts compared with pharmaceutical care records, suggesting that this system is more specialized for analyzing subjective data from pharmaceutical care records.</p><p><strong>Conclusions: </strong>We successfully developed a high-performance system specialized in analyzing subjective data from pharmaceutical care records by training a large dataset, with near-complete saturation of system performance with about 3600 training records. This system will be useful for monitoring symptoms, offering benefits for both clinical practice and research.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e68863"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/68863","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Patients' oral expressions serve as valuable sources of clinical information to improve pharmacotherapy. Natural language processing (NLP) is a useful approach for analyzing unstructured text data, such as patient narratives. However, few studies have focused on using NLP for narratives in the Japanese language.

Objective: We aimed to develop a high-performance NLP system for extracting clinical information from patient narratives by examining the performance progression with a gradual increase in the amount of training data.

Methods: We used subjective texts from the pharmaceutical care records of Keio University Hospital from April 1, 2018, to March 31, 2019, comprising 12,004 records from 6559 cases. After preprocessing, we annotated diseases and symptoms within the texts. We then trained and evaluated a deep learning model (bidirectional encoder representations from transformers combined with a conditional random field [BERT-CRF]) through 10-fold cross-validation. The annotated data were divided into 10 subsets, and the amount of training data was progressively increased over 10 steps. We also analyzed the causes of errors. Finally, we applied the developed system to the analysis of case report texts to evaluate its usability for texts from other sources.

Results: The F1-score of the system improved from 0.67 to 0.82 as the amount of training data increased from 1200 to 12,004 records. The F1-score reached 0.78 with 3600 records and was largely similar thereafter. As performance improved, errors from incorrect extractions decreased significantly, which resulted in an increase in precision. For case reports, the F1-score also increased from 0.34 to 0.41 as the training dataset expanded from 1200 to 12,004 records. Performance was lower for extracting symptoms from case report texts compared with pharmaceutical care records, suggesting that this system is more specialized for analyzing subjective data from pharmaceutical care records.

Conclusions: We successfully developed a high-performance system specialized in analyzing subjective data from pharmaceutical care records by training a large dataset, with near-complete saturation of system performance with about 3600 training records. This system will be useful for monitoring symptoms, offering benefits for both clinical practice and research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信