Exploring Curriculum Considerations to Prepare Future Radiographers for an AI-Assisted Health Care Environment: Protocol for Scoping Review.

IF 1.4 Q3 HEALTH CARE SCIENCES & SERVICES
Chamandra Kammies, Elize Archer, Penelope Engel-Hills, Mariette Volschenk
{"title":"Exploring Curriculum Considerations to Prepare Future Radiographers for an AI-Assisted Health Care Environment: Protocol for Scoping Review.","authors":"Chamandra Kammies, Elize Archer, Penelope Engel-Hills, Mariette Volschenk","doi":"10.2196/60431","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The use of artificial intelligence (AI) technologies in radiography practice is increasing. As this advanced technology becomes more embedded in radiography systems and clinical practice, the role of radiographers will evolve. In the context of these anticipated changes, it may be reasonable to expect modifications to the competencies and educational requirements of current and future practitioners to ensure successful AI adoption.</p><p><strong>Objective: </strong>The aim of this scoping review is to explore and synthesize the literature on the adjustments needed in the radiography curriculum to prepare radiography students for the demands of AI-assisted health care environments.</p><p><strong>Methods: </strong>Using the Joanna Briggs Institute methodology, an initial search was run in Scopus to determine whether the search strategy that was developed with a library specialist would capture the relevant literature by screening the title and abstract of the first 50 articles. Additional search terms identified in the articles were added to the search strategy. Next, EBSCOhost, PubMed, and Web of Science databases were searched. In total, 2 reviewers will independently review the title, abstract, and full-text articles according to the predefined inclusion and exclusion criteria, with conflicts resolved by a third reviewer.</p><p><strong>Results: </strong>The search results will be reported using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) checklist. The final scoping review will present the data analysis as findings in tabular form and through narrative descriptions. The final database searches were completed in October 2024 and yielded 2224 records. Title and abstract screening of 1930 articles is underway after removing 294 duplicates. The scoping review is expected to be finalized by the end of March 2025.</p><p><strong>Conclusions: </strong>A scoping review aims to systematically map the evidence on the adjustments needed in the radiography curriculum to prepare radiography students for the integration of AI technologies in the health care environment. It is relevant to map the evidence because increased integration of AI-based technologies in clinical practice has been noted and changes in practice must be underpinned by appropriate education and training. The findings in this study will provide a better understanding of how the radiography curriculum should adapt to meet the educational needs of current and future radiographers to ensure competent and safe practice in response to AI technologies.</p><p><strong>Trial registration: </strong>Open Science Framework 3nx2a; https://osf.io/3nx2a.</p><p><strong>International registered report identifier (irrid): </strong>PRR1-10.2196/60431.</p>","PeriodicalId":14755,"journal":{"name":"JMIR Research Protocols","volume":"14 ","pages":"e60431"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Research Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/60431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The use of artificial intelligence (AI) technologies in radiography practice is increasing. As this advanced technology becomes more embedded in radiography systems and clinical practice, the role of radiographers will evolve. In the context of these anticipated changes, it may be reasonable to expect modifications to the competencies and educational requirements of current and future practitioners to ensure successful AI adoption.

Objective: The aim of this scoping review is to explore and synthesize the literature on the adjustments needed in the radiography curriculum to prepare radiography students for the demands of AI-assisted health care environments.

Methods: Using the Joanna Briggs Institute methodology, an initial search was run in Scopus to determine whether the search strategy that was developed with a library specialist would capture the relevant literature by screening the title and abstract of the first 50 articles. Additional search terms identified in the articles were added to the search strategy. Next, EBSCOhost, PubMed, and Web of Science databases were searched. In total, 2 reviewers will independently review the title, abstract, and full-text articles according to the predefined inclusion and exclusion criteria, with conflicts resolved by a third reviewer.

Results: The search results will be reported using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) checklist. The final scoping review will present the data analysis as findings in tabular form and through narrative descriptions. The final database searches were completed in October 2024 and yielded 2224 records. Title and abstract screening of 1930 articles is underway after removing 294 duplicates. The scoping review is expected to be finalized by the end of March 2025.

Conclusions: A scoping review aims to systematically map the evidence on the adjustments needed in the radiography curriculum to prepare radiography students for the integration of AI technologies in the health care environment. It is relevant to map the evidence because increased integration of AI-based technologies in clinical practice has been noted and changes in practice must be underpinned by appropriate education and training. The findings in this study will provide a better understanding of how the radiography curriculum should adapt to meet the educational needs of current and future radiographers to ensure competent and safe practice in response to AI technologies.

Trial registration: Open Science Framework 3nx2a; https://osf.io/3nx2a.

International registered report identifier (irrid): PRR1-10.2196/60431.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
5.90%
发文量
414
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信