Chaolin Song, Shiwen He, Yurong Qian, Xinhui Li, Yue Hu, Jiaying Chen, Jingfu Wang, Lei Deng
{"title":"DeepMVD: A Novel Multiview Dynamic Feature Fusion Model for Accurate Protein Function Prediction.","authors":"Chaolin Song, Shiwen He, Yurong Qian, Xinhui Li, Yue Hu, Jiaying Chen, Jingfu Wang, Lei Deng","doi":"10.1021/acs.jcim.4c02216","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins, as the fundamental macromolecules of life, play critical roles in various biological processes. Recent advancements in intelligent protein function prediction methods leverage sequences, structures, and biomedical literature data. Among them, function prediction methods for protein sequences remain an enduring and popular research direction. Existing studies have failed to effectively utilize the multilevel attribute features reflected in protein sequences. This limitation hinders the enrichment of protein descriptions needed for high-precision prediction of protein functions. To address this, we propose DeepMVD, a novel deep learning model that enhances prediction accuracy by dynamically fusing multiview features. DeepMVD employs specialized modules to extract unique features from each view and utilizes an adaptive fusion mechanism for optimal integration. Evaluation of the CAFA4 data set shows that DeepMVD significantly outperforms existing state-of-the-art models in terms of BP, MF, and CC terminology, all obtaining the highest Fmax (0.523, 0.712, 0.740). Ablation studies confirm the model's robustness. Source code and data sets are available at http://swanhub.co/scl/DeepMVD.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"3077-3089"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02216","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Proteins, as the fundamental macromolecules of life, play critical roles in various biological processes. Recent advancements in intelligent protein function prediction methods leverage sequences, structures, and biomedical literature data. Among them, function prediction methods for protein sequences remain an enduring and popular research direction. Existing studies have failed to effectively utilize the multilevel attribute features reflected in protein sequences. This limitation hinders the enrichment of protein descriptions needed for high-precision prediction of protein functions. To address this, we propose DeepMVD, a novel deep learning model that enhances prediction accuracy by dynamically fusing multiview features. DeepMVD employs specialized modules to extract unique features from each view and utilizes an adaptive fusion mechanism for optimal integration. Evaluation of the CAFA4 data set shows that DeepMVD significantly outperforms existing state-of-the-art models in terms of BP, MF, and CC terminology, all obtaining the highest Fmax (0.523, 0.712, 0.740). Ablation studies confirm the model's robustness. Source code and data sets are available at http://swanhub.co/scl/DeepMVD.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.