I/O in Machine Learning Applications on HPC Systems: A 360-degree Survey

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Noah Lewis, Jean Luca Bez, Surendra Byna
{"title":"I/O in Machine Learning Applications on HPC Systems: A 360-degree Survey","authors":"Noah Lewis, Jean Luca Bez, Surendra Byna","doi":"10.1145/3722215","DOIUrl":null,"url":null,"abstract":"Growing interest in Artificial Intelligence (AI) has resulted in a surge in demand for faster methods of Machine Learning (ML) model training and inference. This demand for speed has prompted the use of high performance computing (HPC) systems that excel in managing distributed workloads. Because data is the main fuel for AI applications, the performance of the storage and I/O subsystem of HPC systems is critical. In the past, HPC applications accessed large portions of data written by simulations or experiments or ingested data for visualizations or analysis tasks. ML workloads perform small reads spread across a large number of random files. This shift of I/O access patterns poses several challenges to modern parallel storage systems. In this paper, we survey I/O in ML applications on HPC systems, and target literature within a 6-year time window from 2019 to 2024. We define the scope of the survey, provide an overview of the common phases of ML, review available profilers and benchmarks, examine the I/O patterns encountered during offline data preparation, training, and inference, and explore I/O optimizations utilized in modern ML frameworks and proposed in recent literature. Lastly, we seek to expose research gaps that could spawn further R&D.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"47 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3722215","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Growing interest in Artificial Intelligence (AI) has resulted in a surge in demand for faster methods of Machine Learning (ML) model training and inference. This demand for speed has prompted the use of high performance computing (HPC) systems that excel in managing distributed workloads. Because data is the main fuel for AI applications, the performance of the storage and I/O subsystem of HPC systems is critical. In the past, HPC applications accessed large portions of data written by simulations or experiments or ingested data for visualizations or analysis tasks. ML workloads perform small reads spread across a large number of random files. This shift of I/O access patterns poses several challenges to modern parallel storage systems. In this paper, we survey I/O in ML applications on HPC systems, and target literature within a 6-year time window from 2019 to 2024. We define the scope of the survey, provide an overview of the common phases of ML, review available profilers and benchmarks, examine the I/O patterns encountered during offline data preparation, training, and inference, and explore I/O optimizations utilized in modern ML frameworks and proposed in recent literature. Lastly, we seek to expose research gaps that could spawn further R&D.
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信