Multi-Axis Feature Diversity Enhancement for Remote Sensing Video Super-Resolution

Yi Xiao;Qiangqiang Yuan;Kui Jiang;Yuzeng Chen;Shiqi Wang;Chia-Wen Lin
{"title":"Multi-Axis Feature Diversity Enhancement for Remote Sensing Video Super-Resolution","authors":"Yi Xiao;Qiangqiang Yuan;Kui Jiang;Yuzeng Chen;Shiqi Wang;Chia-Wen Lin","doi":"10.1109/TIP.2025.3547298","DOIUrl":null,"url":null,"abstract":"How to aggregate spatial-temporal information plays an essential role in video super-resolution (VSR) tasks. Despite the remarkable success, existing methods adopt static convolution to encode spatial-temporal information, which lacks flexibility in aggregating information in large-scale remote sensing scenes, as they often contain heterogeneous features (e.g., diverse textures). In this paper, we propose a spatial feature diversity enhancement module (SDE) and channel diversity enhancement module (CDE), which explore the diverse representation of different local patterns while aggregating the global response with compactly channel-wise embedding representation. Specifically, SDE introduces multiple learnable filters to extract representative spatial variants and encodes them to generate a dynamic kernel for enriched spatial representation. To explore the diversity in the channel dimension, CDE exploits the discrete cosine transform to transform the feature into the frequency domain. This enriches the channel representation while mitigating massive frequency loss caused by pooling operation. Based on SDE and CDE, we further devise a multi-axis feature diversity enhancement (MADE) module to harmonize the spatial, channel, and pixel-wise features for diverse feature fusion. These elaborate strategies form a novel network for satellite VSR, termed MADNet, which achieves favorable performance against state-of-the-art method BasicVSR++ in terms of average PSNR by 0.14 dB on various video satellites, including JiLin-1, Carbonite-2, SkySat-1, and UrtheCast. Code will be available at <uri>https://github.com/XY-boy/MADNet</uri>","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1766-1778"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10918606/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How to aggregate spatial-temporal information plays an essential role in video super-resolution (VSR) tasks. Despite the remarkable success, existing methods adopt static convolution to encode spatial-temporal information, which lacks flexibility in aggregating information in large-scale remote sensing scenes, as they often contain heterogeneous features (e.g., diverse textures). In this paper, we propose a spatial feature diversity enhancement module (SDE) and channel diversity enhancement module (CDE), which explore the diverse representation of different local patterns while aggregating the global response with compactly channel-wise embedding representation. Specifically, SDE introduces multiple learnable filters to extract representative spatial variants and encodes them to generate a dynamic kernel for enriched spatial representation. To explore the diversity in the channel dimension, CDE exploits the discrete cosine transform to transform the feature into the frequency domain. This enriches the channel representation while mitigating massive frequency loss caused by pooling operation. Based on SDE and CDE, we further devise a multi-axis feature diversity enhancement (MADE) module to harmonize the spatial, channel, and pixel-wise features for diverse feature fusion. These elaborate strategies form a novel network for satellite VSR, termed MADNet, which achieves favorable performance against state-of-the-art method BasicVSR++ in terms of average PSNR by 0.14 dB on various video satellites, including JiLin-1, Carbonite-2, SkySat-1, and UrtheCast. Code will be available at https://github.com/XY-boy/MADNet
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信