ZNF451 collaborates with RNF8 to regulate RNF168 localization and amplify ubiquitination signaling to promote DNA damage repair and regulate radiosensitivity

IF 13.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Feng Xu, Qi Xia, Bin Chen, Ruru Wang, Jie Zhang, Xipeng Zhao, Zhaoyang Zhang, Zhicheng Yao, Jie Zhang, Shenglan Zhou, Xiaona Li, Biao Chen, An Xu, Lijun Wu, Guoping Zhao
{"title":"ZNF451 collaborates with RNF8 to regulate RNF168 localization and amplify ubiquitination signaling to promote DNA damage repair and regulate radiosensitivity","authors":"Feng Xu, Qi Xia, Bin Chen, Ruru Wang, Jie Zhang, Xipeng Zhao, Zhaoyang Zhang, Zhicheng Yao, Jie Zhang, Shenglan Zhou, Xiaona Li, Biao Chen, An Xu, Lijun Wu, Guoping Zhao","doi":"10.1038/s41418-025-01472-0","DOIUrl":null,"url":null,"abstract":"<p>The ubiquitination of histone H2A/H2AX, catalyzed by RNF8/RNF168, is a crucial step in the repair of DNA double-strand breaks (DSBs), playing a significant role in transmitting and amplifying DNA damage response signals. However, the upstream regulatory mechanisms of RNF168 remain unclear. Here, we demonstrate that ZNF451 catalyzes the SUMOylation of RNF168, thereby regulating the ubiquitination of histone H2A/H2AX. Specifically, ZNF451 rapidly responds to radiation-induced DNA damage, accumulating abundantly at damage sites and catalyzing the SUMO2 modification of RNF168. This modification stabilizes RNF168, enhancing its accumulation at damage sites, which increases the ubiquitination levels of downstream histone H2A/H2AX and promotes the DNA damage repair process. Furthermore, we find that ZNF451 and RNF8 jointly regulate RNF168 in a novel manner, exhibiting both competitive and cooperative characteristics. The interaction between RNF168 and either ZNF451 or RNF8 mutually inhibits each other. However, simultaneous loss of ZNF451 and RNF8 markedly impedes the recruitment of RNF168 to damage sites. Whereas, varying expression levels of ZNF451 and RNF8 suggest that both facilitate the interaction between RNF168 and the downstream factor H2AX, but the interaction plateaus beyond a specific threshold. Altogether, these findings reveal that the SUMOylation catalyzed by ZNF451 is involved in regulating RNF168-induced ubiquitin signaling in DSBs repair and suggest that ZNF451 could serve as a potential therapeutic target in tumor radiotherapy.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"31 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01472-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ubiquitination of histone H2A/H2AX, catalyzed by RNF8/RNF168, is a crucial step in the repair of DNA double-strand breaks (DSBs), playing a significant role in transmitting and amplifying DNA damage response signals. However, the upstream regulatory mechanisms of RNF168 remain unclear. Here, we demonstrate that ZNF451 catalyzes the SUMOylation of RNF168, thereby regulating the ubiquitination of histone H2A/H2AX. Specifically, ZNF451 rapidly responds to radiation-induced DNA damage, accumulating abundantly at damage sites and catalyzing the SUMO2 modification of RNF168. This modification stabilizes RNF168, enhancing its accumulation at damage sites, which increases the ubiquitination levels of downstream histone H2A/H2AX and promotes the DNA damage repair process. Furthermore, we find that ZNF451 and RNF8 jointly regulate RNF168 in a novel manner, exhibiting both competitive and cooperative characteristics. The interaction between RNF168 and either ZNF451 or RNF8 mutually inhibits each other. However, simultaneous loss of ZNF451 and RNF8 markedly impedes the recruitment of RNF168 to damage sites. Whereas, varying expression levels of ZNF451 and RNF8 suggest that both facilitate the interaction between RNF168 and the downstream factor H2AX, but the interaction plateaus beyond a specific threshold. Altogether, these findings reveal that the SUMOylation catalyzed by ZNF451 is involved in regulating RNF168-induced ubiquitin signaling in DSBs repair and suggest that ZNF451 could serve as a potential therapeutic target in tumor radiotherapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信