Interface-Tailored Secondary Excitation and Ultrafast Charge/Energy Transfer in Ti3C2Tx-MoS2 Heterostructure Films

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiaxu Zhang, Rafael Muñoz-Mármol, Shuai Fu, Xiaodong Li, Wenhao Zheng, Andrea Villa, Giuseppe M. Paternò, Darius Pohl, Alexander Tahn, Mike Hambsch, Stefan C. B. Mannsfeld, Dongqi Li, Hao Xu, Quanquan Guo, Hai I. Wang, Francesco Scotognella, Minghao Yu, Xinliang Feng
{"title":"Interface-Tailored Secondary Excitation and Ultrafast Charge/Energy Transfer in Ti3C2Tx-MoS2 Heterostructure Films","authors":"Jiaxu Zhang, Rafael Muñoz-Mármol, Shuai Fu, Xiaodong Li, Wenhao Zheng, Andrea Villa, Giuseppe M. Paternò, Darius Pohl, Alexander Tahn, Mike Hambsch, Stefan C. B. Mannsfeld, Dongqi Li, Hao Xu, Quanquan Guo, Hai I. Wang, Francesco Scotognella, Minghao Yu, Xinliang Feng","doi":"10.1021/jacs.5c01826","DOIUrl":null,"url":null,"abstract":"Charge/energy separation across interfaces of plasmonic materials is vital for minimizing plasmonic losses and enhancing their performance in photochemical and optoelectronic applications. While heterostructures combining plasmonic two-dimensional transition metal carbides/nitrides (MXenes) and semiconducting transition metal dichalcogenides (TMDs) hold significant potential, the mechanisms governing plasmon-induced carrier dynamics at these interfaces remain elusive. Here, we uncover a distinctive secondary excitation phenomenon and an ultrafast charge/energy transfer process in heterostructure films composed of macro-scale Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> and MoS<sub>2</sub> films. Using Rayleigh–Bénard convection and Marangoni effect-induced self-assembly, we fabricate large-scale (square centimeters) Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> and MoS<sub>2</sub> films composed of edge-connected monolayer nanoflakes. These films are flexibly stacked in a controlled sequence to form macroscopic heterostructures, enabling the investigation and manipulation of excited-state dynamics using transient absorption and optical pump-terahertz probe spectroscopy. In the Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>-MoS<sub>2</sub> heterostructure, we observe a secondary excitation in MoS<sub>2</sub> driven by the surface plasmon resonance of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>. This phenomenon, with a characteristic rise time constant of ∼70 ps, is likely facilitated by acoustic phonon recycling across the interface. Further interfacial thermal transport engineering─achieved by tailoring the sequence and combination of interfaces in trilayer heterostructures─allows extending the characteristic time to ∼175 ps. Furthermore, we identify a sub-150 fs ultrafast charge/energy transfer process from Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> to MoS<sub>2</sub>. The transfer efficiency is strongly dependent on the excitation photon energy, resulting in amplified photoconductivity in MoS<sub>2</sub> by up to ∼180% under 3.10 eV excitation. These insights are crucial for developing plasmonic MXene-based heterostructures, paving the way for advancements in photochemical and optoelectronic applications.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"39 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c01826","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Charge/energy separation across interfaces of plasmonic materials is vital for minimizing plasmonic losses and enhancing their performance in photochemical and optoelectronic applications. While heterostructures combining plasmonic two-dimensional transition metal carbides/nitrides (MXenes) and semiconducting transition metal dichalcogenides (TMDs) hold significant potential, the mechanisms governing plasmon-induced carrier dynamics at these interfaces remain elusive. Here, we uncover a distinctive secondary excitation phenomenon and an ultrafast charge/energy transfer process in heterostructure films composed of macro-scale Ti3C2Tx and MoS2 films. Using Rayleigh–Bénard convection and Marangoni effect-induced self-assembly, we fabricate large-scale (square centimeters) Ti3C2Tx and MoS2 films composed of edge-connected monolayer nanoflakes. These films are flexibly stacked in a controlled sequence to form macroscopic heterostructures, enabling the investigation and manipulation of excited-state dynamics using transient absorption and optical pump-terahertz probe spectroscopy. In the Ti3C2Tx-MoS2 heterostructure, we observe a secondary excitation in MoS2 driven by the surface plasmon resonance of Ti3C2Tx. This phenomenon, with a characteristic rise time constant of ∼70 ps, is likely facilitated by acoustic phonon recycling across the interface. Further interfacial thermal transport engineering─achieved by tailoring the sequence and combination of interfaces in trilayer heterostructures─allows extending the characteristic time to ∼175 ps. Furthermore, we identify a sub-150 fs ultrafast charge/energy transfer process from Ti3C2Tx to MoS2. The transfer efficiency is strongly dependent on the excitation photon energy, resulting in amplified photoconductivity in MoS2 by up to ∼180% under 3.10 eV excitation. These insights are crucial for developing plasmonic MXene-based heterostructures, paving the way for advancements in photochemical and optoelectronic applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信