On the Cheeger Inequality in Carnot-Carathéodory Spaces.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2025-01-01 Epub Date: 2025-02-06 DOI:10.1007/s12220-025-01912-w
Martijn Kluitenberg
{"title":"On the Cheeger Inequality in Carnot-Carathéodory Spaces.","authors":"Martijn Kluitenberg","doi":"10.1007/s12220-025-01912-w","DOIUrl":null,"url":null,"abstract":"<p><p>We generalize the Cheeger inequality, a lower bound on the first nontrivial eigenvalue of a Laplacian, to the case of geometric sub-Laplacians on rank-varying Carnot-Carathéodory spaces and we describe a concrete method to lower bound the Cheeger constant. The proof is geometric, and works for Dirichlet, Neumann and mixed boundary conditions. One of the main technical tools in the proof is a generalization of Courant's nodal domain theorem, which is proven from scratch for Neumann and mixed boundary conditions. Carnot groups and the Baouendi-Grushin cylinder are treated as examples.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"35 3","pages":"82"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880090/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-025-01912-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize the Cheeger inequality, a lower bound on the first nontrivial eigenvalue of a Laplacian, to the case of geometric sub-Laplacians on rank-varying Carnot-Carathéodory spaces and we describe a concrete method to lower bound the Cheeger constant. The proof is geometric, and works for Dirichlet, Neumann and mixed boundary conditions. One of the main technical tools in the proof is a generalization of Courant's nodal domain theorem, which is proven from scratch for Neumann and mixed boundary conditions. Carnot groups and the Baouendi-Grushin cylinder are treated as examples.

carnot - carathacimodory空间中的Cheeger不等式。
将Cheeger不等式,即拉普拉斯算子的第一个非平凡特征值的下界推广到变秩carnot - carathsamodory空间上的几何次拉普拉斯算子,并给出了Cheeger常数下界的一种具体方法。证明是几何的,适用于狄利克雷、诺伊曼和混合边界条件。证明中的一个主要技术工具是推广Courant节点域定理,该定理是在Neumann和混合边界条件下从零开始证明的。以卡诺群和Baouendi-Grushin圆柱为例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信