Developing resistance to Fusarium wilt in chickpea: From identifying meta-QTLs to molecular breeding.

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY
Plant Genome Pub Date : 2025-03-01 DOI:10.1002/tpg2.70004
Jahad Soorni, Fatemeh Loni, Parisa Daryani, Nazanin Amirbakhtiar, Leila Pourhang, Hamid Reza Pouralibaba, Hamid Hassaneian Khoshro, Hadi Darzi Ramandi, Zahra-Sadat Shobbar
{"title":"Developing resistance to Fusarium wilt in chickpea: From identifying meta-QTLs to molecular breeding.","authors":"Jahad Soorni, Fatemeh Loni, Parisa Daryani, Nazanin Amirbakhtiar, Leila Pourhang, Hamid Reza Pouralibaba, Hamid Hassaneian Khoshro, Hadi Darzi Ramandi, Zahra-Sadat Shobbar","doi":"10.1002/tpg2.70004","DOIUrl":null,"url":null,"abstract":"<p><p>Fusarium wilt (FW) significantly affects the growth and development of chickpea (Cicer arietinum L.), leading to substantial economic losses. FW resistance is a quantitative trait that is controlled by multiple genomic regions. In this study, a meta-analysis was conducted on 32 quantitative trait loci (QTLs) associated with FW resistance, leading to the identification of seven meta-QTL (MQTL) regions distributed across CaLG2, CaLG4, CaLG5, and CaLG6 of the chickpea linkage groups. The integrated analysis revealed several candidate genes potentially important for FW resistance, including genes associated with sensing (e.g., LRR-RLK), signaling (e.g., mitogen-activated protein kinase [MAPK1]), and transcription regulation (e.g., NAC, WRKY, and bZIP). Subsequently, a marker-assisted backcrossing (MABC) trial was executed leveraging the MQTL outcomes to introgress FW resistance from an FW-resistant chickpea cultivar (Ana) into a superior high-yielding Kabuli cultivar (Hashem). The breeding process was extended over 5 years (2018-2023) and resulted in the development of BC<sub>3</sub>F<sub>2</sub> genotypes. Consequently, 12 genotypes carrying homozygous resistance alleles were chosen, with three genotypes showing genetic backgrounds matching 90%-96% of the recurrent parent. The findings of this study have significant implications for upcoming programs, encompassing fine-mapping, marker-assisted breeding, and genetic engineering, consequently contributing to the effective control of FW and the improved production of chickpea.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":"18 1","pages":"e70004"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885688/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.70004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Fusarium wilt (FW) significantly affects the growth and development of chickpea (Cicer arietinum L.), leading to substantial economic losses. FW resistance is a quantitative trait that is controlled by multiple genomic regions. In this study, a meta-analysis was conducted on 32 quantitative trait loci (QTLs) associated with FW resistance, leading to the identification of seven meta-QTL (MQTL) regions distributed across CaLG2, CaLG4, CaLG5, and CaLG6 of the chickpea linkage groups. The integrated analysis revealed several candidate genes potentially important for FW resistance, including genes associated with sensing (e.g., LRR-RLK), signaling (e.g., mitogen-activated protein kinase [MAPK1]), and transcription regulation (e.g., NAC, WRKY, and bZIP). Subsequently, a marker-assisted backcrossing (MABC) trial was executed leveraging the MQTL outcomes to introgress FW resistance from an FW-resistant chickpea cultivar (Ana) into a superior high-yielding Kabuli cultivar (Hashem). The breeding process was extended over 5 years (2018-2023) and resulted in the development of BC3F2 genotypes. Consequently, 12 genotypes carrying homozygous resistance alleles were chosen, with three genotypes showing genetic backgrounds matching 90%-96% of the recurrent parent. The findings of this study have significant implications for upcoming programs, encompassing fine-mapping, marker-assisted breeding, and genetic engineering, consequently contributing to the effective control of FW and the improved production of chickpea.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Genome
Plant Genome PLANT SCIENCES-GENETICS & HEREDITY
CiteScore
6.00
自引率
4.80%
发文量
93
审稿时长
>12 weeks
期刊介绍: The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信