{"title":"Developing resistance to Fusarium wilt in chickpea: From identifying meta-QTLs to molecular breeding.","authors":"Jahad Soorni, Fatemeh Loni, Parisa Daryani, Nazanin Amirbakhtiar, Leila Pourhang, Hamid Reza Pouralibaba, Hamid Hassaneian Khoshro, Hadi Darzi Ramandi, Zahra-Sadat Shobbar","doi":"10.1002/tpg2.70004","DOIUrl":null,"url":null,"abstract":"<p><p>Fusarium wilt (FW) significantly affects the growth and development of chickpea (Cicer arietinum L.), leading to substantial economic losses. FW resistance is a quantitative trait that is controlled by multiple genomic regions. In this study, a meta-analysis was conducted on 32 quantitative trait loci (QTLs) associated with FW resistance, leading to the identification of seven meta-QTL (MQTL) regions distributed across CaLG2, CaLG4, CaLG5, and CaLG6 of the chickpea linkage groups. The integrated analysis revealed several candidate genes potentially important for FW resistance, including genes associated with sensing (e.g., LRR-RLK), signaling (e.g., mitogen-activated protein kinase [MAPK1]), and transcription regulation (e.g., NAC, WRKY, and bZIP). Subsequently, a marker-assisted backcrossing (MABC) trial was executed leveraging the MQTL outcomes to introgress FW resistance from an FW-resistant chickpea cultivar (Ana) into a superior high-yielding Kabuli cultivar (Hashem). The breeding process was extended over 5 years (2018-2023) and resulted in the development of BC<sub>3</sub>F<sub>2</sub> genotypes. Consequently, 12 genotypes carrying homozygous resistance alleles were chosen, with three genotypes showing genetic backgrounds matching 90%-96% of the recurrent parent. The findings of this study have significant implications for upcoming programs, encompassing fine-mapping, marker-assisted breeding, and genetic engineering, consequently contributing to the effective control of FW and the improved production of chickpea.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":"18 1","pages":"e70004"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885688/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.70004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Fusarium wilt (FW) significantly affects the growth and development of chickpea (Cicer arietinum L.), leading to substantial economic losses. FW resistance is a quantitative trait that is controlled by multiple genomic regions. In this study, a meta-analysis was conducted on 32 quantitative trait loci (QTLs) associated with FW resistance, leading to the identification of seven meta-QTL (MQTL) regions distributed across CaLG2, CaLG4, CaLG5, and CaLG6 of the chickpea linkage groups. The integrated analysis revealed several candidate genes potentially important for FW resistance, including genes associated with sensing (e.g., LRR-RLK), signaling (e.g., mitogen-activated protein kinase [MAPK1]), and transcription regulation (e.g., NAC, WRKY, and bZIP). Subsequently, a marker-assisted backcrossing (MABC) trial was executed leveraging the MQTL outcomes to introgress FW resistance from an FW-resistant chickpea cultivar (Ana) into a superior high-yielding Kabuli cultivar (Hashem). The breeding process was extended over 5 years (2018-2023) and resulted in the development of BC3F2 genotypes. Consequently, 12 genotypes carrying homozygous resistance alleles were chosen, with three genotypes showing genetic backgrounds matching 90%-96% of the recurrent parent. The findings of this study have significant implications for upcoming programs, encompassing fine-mapping, marker-assisted breeding, and genetic engineering, consequently contributing to the effective control of FW and the improved production of chickpea.
期刊介绍:
The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.