Molecular docking- and reporter-based screening identify dicoumarol against ER stress-induced liver injury in mice through inhibiting IRE1α activity

IF 5.2 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Jifeng Yang , Wei Luo , Yanyu Chen , Yimin Zhou , Jiahai Wang , Lin Mi , Guojun Shi
{"title":"Molecular docking- and reporter-based screening identify dicoumarol against ER stress-induced liver injury in mice through inhibiting IRE1α activity","authors":"Jifeng Yang ,&nbsp;Wei Luo ,&nbsp;Yanyu Chen ,&nbsp;Yimin Zhou ,&nbsp;Jiahai Wang ,&nbsp;Lin Mi ,&nbsp;Guojun Shi","doi":"10.1016/j.lfs.2025.123526","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>Drug-induced liver injury is among the most challenging liver disorders. Endoplasmic reticulum (ER) is responsible for the correct protein folding and secretion, which are highly active in hepatocytes. Failure in maintaining the proper protein folding under pathological condition or external stimuli leads to the unfolded protein response (UPR) to restore ER homeostasis or induce cell death. IRE1α pathway is the most conserved UPR branch with diverse physiological and pathological functions. This study aimed to screen for natural compounds to alleviate hepatic ER stress and liver injury by modulating IRE1α activity.</div></div><div><h3>Materials and methods</h3><div>ATP-competitive molecules from chemical libraries were recognized by virtual screening for targeting the IRE1α kinase domain. IRE1α activity-based XBP1s-reporter cell lines with flow cytometric analysis were employed to validate candidates from chemical libraries. Then the functions of the top candidate compound on IRE1α signaling were analyzed followed by the treatment with ER stress agonists <em>in vitro</em>. Finally, the candidate compound was used to treat ER stress-induced acute liver injury to evaluate its protective effect <em>in vivo</em>.</div></div><div><h3>Key findings</h3><div>Dicoumarol (DIC) was discovered as a potential inhibitor of IRE1α activation in HEK293T cells, HepG2 cells and primary hepatocytes. Particularly, DIC ameliorates tunicamycin (Tm)- and carbon tetrachloride (CCl<sub>4</sub>)-induced acute hepatic ER stress to protect against liver injury.</div></div><div><h3>Significance</h3><div>This study established a drug screening strategy against IRE1α activation and identified potential new therapeutic effects of DIC in treating liver injury-related diseases.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"369 ","pages":"Article 123526"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525001602","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aims

Drug-induced liver injury is among the most challenging liver disorders. Endoplasmic reticulum (ER) is responsible for the correct protein folding and secretion, which are highly active in hepatocytes. Failure in maintaining the proper protein folding under pathological condition or external stimuli leads to the unfolded protein response (UPR) to restore ER homeostasis or induce cell death. IRE1α pathway is the most conserved UPR branch with diverse physiological and pathological functions. This study aimed to screen for natural compounds to alleviate hepatic ER stress and liver injury by modulating IRE1α activity.

Materials and methods

ATP-competitive molecules from chemical libraries were recognized by virtual screening for targeting the IRE1α kinase domain. IRE1α activity-based XBP1s-reporter cell lines with flow cytometric analysis were employed to validate candidates from chemical libraries. Then the functions of the top candidate compound on IRE1α signaling were analyzed followed by the treatment with ER stress agonists in vitro. Finally, the candidate compound was used to treat ER stress-induced acute liver injury to evaluate its protective effect in vivo.

Key findings

Dicoumarol (DIC) was discovered as a potential inhibitor of IRE1α activation in HEK293T cells, HepG2 cells and primary hepatocytes. Particularly, DIC ameliorates tunicamycin (Tm)- and carbon tetrachloride (CCl4)-induced acute hepatic ER stress to protect against liver injury.

Significance

This study established a drug screening strategy against IRE1α activation and identified potential new therapeutic effects of DIC in treating liver injury-related diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Life sciences
Life sciences 医学-药学
CiteScore
12.20
自引率
1.60%
发文量
841
审稿时长
6 months
期刊介绍: Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed. The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信