{"title":"An integrative phenotype-structured partial differential equation model for the population dynamics of epithelial-mesenchymal transition.","authors":"Jules Guilberteau, Paras Jain, Mohit Kumar Jolly, Camille Pouchol, Nastassia Pouradier Duteil","doi":"10.1038/s41540-025-00502-4","DOIUrl":null,"url":null,"abstract":"<p><p>Phenotypic heterogeneity along the epithelial-mesenchymal (E-M) axis contributes to cancer metastasis and drug resistance. Recent experimental efforts have collated detailed time-course data on the emergence and dynamics of E-M heterogeneity in a cell population. However, it remains unclear how different intra- and inter-cellular processes shape the dynamics of E-M heterogeneity. Here, using Cell Population Balance model, we capture the dynamics of cell density along E-M phenotypic axis resulting from interplay between-(a) intracellular regulatory interaction among biomolecules, (b) cell division and death and (c) stochastic cell-state transition. We find that while the existence of E-M heterogeneity depends on intracellular regulation, heterogeneity gets enhanced with stochastic cell-state transitions and diminished by growth rate differences. Further, resource competition among E-M cells can lead to both bi-phasic growth of the total population and/or bi-stability in the phenotypic composition. Overall, our model highlights complex interplay between cellular processes shaping dynamic patterns of E-M heterogeneity.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"24"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885588/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00502-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phenotypic heterogeneity along the epithelial-mesenchymal (E-M) axis contributes to cancer metastasis and drug resistance. Recent experimental efforts have collated detailed time-course data on the emergence and dynamics of E-M heterogeneity in a cell population. However, it remains unclear how different intra- and inter-cellular processes shape the dynamics of E-M heterogeneity. Here, using Cell Population Balance model, we capture the dynamics of cell density along E-M phenotypic axis resulting from interplay between-(a) intracellular regulatory interaction among biomolecules, (b) cell division and death and (c) stochastic cell-state transition. We find that while the existence of E-M heterogeneity depends on intracellular regulation, heterogeneity gets enhanced with stochastic cell-state transitions and diminished by growth rate differences. Further, resource competition among E-M cells can lead to both bi-phasic growth of the total population and/or bi-stability in the phenotypic composition. Overall, our model highlights complex interplay between cellular processes shaping dynamic patterns of E-M heterogeneity.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.