Ensemble-learning approach improves fracture prediction using genomic and phenotypic data.

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Qing Wu, Jongyun Jung
{"title":"Ensemble-learning approach improves fracture prediction using genomic and phenotypic data.","authors":"Qing Wu, Jongyun Jung","doi":"10.1007/s00198-025-07437-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an innovative ensemble machine learning model integrating genomic and clinical data to enhance the prediction of major osteoporotic fractures in older men. The Super Learner (SL) model achieved superior performance (AUC = 0.76, accuracy = 95.6%, sensitivity = 94.5%, specificity = 96.1%) compared to individual models. Ensemble machine learning improves fracture prediction accuracy, demonstrating the potential for personalized osteoporosis management.</p><p><strong>Purpose: </strong>Existing fracture risk models have limitations in their accuracy and in integrating genomic data. This study developed and validated an innovative ensemble machine learning (ML) model that combines multiple algorithms and integrates clinical, lifestyle, skeletal, and genomic data to enhance prediction for major osteoporotic fractures (MOF) in older men.</p><p><strong>Methods: </strong>This study analyzed data from 5130 participants in the Osteoporotic Fractures in Men cohort Study. The model incorporated 1103 individual genome-wide significant variants and conventional risk factors of MOF. The participants were randomly divided into training (80%) and testing (20%) sets. Seven ML algorithms were combined using the SL ensemble method with tenfold cross-validation MOF prediction. Model performance was evaluated on the testing set using the area under the curve (AUC), the area under the precision-recall curve, calibration, accuracy, sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and reclassification metrics. SL model performances were evaluated by comparison with baseline models and subgroup analyses by race.</p><p><strong>Results: </strong>The SL model demonstrated the best performance with an AUC of 0.76, accuracy of 95.6%, sensitivity of 94.5%, specificity of 96.1%, NPV of 95.1%, and PPV of 94.7%. Among the individual ML, gradient boosting performed optimally. The SL model outperformed baseline models, and it also achieved accuracies of 93.1% for Whites and 91.6% for Minorities, outperforming single ML in subgroup analysis.</p><p><strong>Conclusion: </strong>The ensemble learning approach significantly improved fracture prediction accuracy and model performance compared to individual ML. Integrating genomic and phenotypic data via the SL approach represents a promising advancement for personalized osteoporosis management.</p>","PeriodicalId":19638,"journal":{"name":"Osteoporosis International","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osteoporosis International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00198-025-07437-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an innovative ensemble machine learning model integrating genomic and clinical data to enhance the prediction of major osteoporotic fractures in older men. The Super Learner (SL) model achieved superior performance (AUC = 0.76, accuracy = 95.6%, sensitivity = 94.5%, specificity = 96.1%) compared to individual models. Ensemble machine learning improves fracture prediction accuracy, demonstrating the potential for personalized osteoporosis management.

Purpose: Existing fracture risk models have limitations in their accuracy and in integrating genomic data. This study developed and validated an innovative ensemble machine learning (ML) model that combines multiple algorithms and integrates clinical, lifestyle, skeletal, and genomic data to enhance prediction for major osteoporotic fractures (MOF) in older men.

Methods: This study analyzed data from 5130 participants in the Osteoporotic Fractures in Men cohort Study. The model incorporated 1103 individual genome-wide significant variants and conventional risk factors of MOF. The participants were randomly divided into training (80%) and testing (20%) sets. Seven ML algorithms were combined using the SL ensemble method with tenfold cross-validation MOF prediction. Model performance was evaluated on the testing set using the area under the curve (AUC), the area under the precision-recall curve, calibration, accuracy, sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and reclassification metrics. SL model performances were evaluated by comparison with baseline models and subgroup analyses by race.

Results: The SL model demonstrated the best performance with an AUC of 0.76, accuracy of 95.6%, sensitivity of 94.5%, specificity of 96.1%, NPV of 95.1%, and PPV of 94.7%. Among the individual ML, gradient boosting performed optimally. The SL model outperformed baseline models, and it also achieved accuracies of 93.1% for Whites and 91.6% for Minorities, outperforming single ML in subgroup analysis.

Conclusion: The ensemble learning approach significantly improved fracture prediction accuracy and model performance compared to individual ML. Integrating genomic and phenotypic data via the SL approach represents a promising advancement for personalized osteoporosis management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Osteoporosis International
Osteoporosis International 医学-内分泌学与代谢
CiteScore
8.10
自引率
10.00%
发文量
224
审稿时长
3 months
期刊介绍: An international multi-disciplinary journal which is a joint initiative between the International Osteoporosis Foundation and the National Osteoporosis Foundation of the USA, Osteoporosis International provides a forum for the communication and exchange of current ideas concerning the diagnosis, prevention, treatment and management of osteoporosis and other metabolic bone diseases. It publishes: original papers - reporting progress and results in all areas of osteoporosis and its related fields; review articles - reflecting the present state of knowledge in special areas of summarizing limited themes in which discussion has led to clearly defined conclusions; educational articles - giving information on the progress of a topic of particular interest; case reports - of uncommon or interesting presentations of the condition. While focusing on clinical research, the Journal will also accept submissions on more basic aspects of research, where they are considered by the editors to be relevant to the human disease spectrum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信